Proceedings of the Korea Water Resources Association Conference
/
2010.05a
/
pp.1495-1499
/
2010
최근에 기후변화 영향 분석을 위한 강수모의발생 기법에 대한 연구가 중요한 문제로 대두되고 있다. 기본적으로 모의된 강수량이 유역단위에서 의미 있는 값으로 수문모형에 입력자료로 활용되기 위해서는 강수지점간의 공간상관성의 유지가 매우 중요하다. 즉 지역적인 수문학적 거동을 유역단위에서 평가하기 위해서는 유역상관성을 고려할 수 있는 다지점(multisite) 모형의 개발이 필수적이다. 이러한 점에서 본 연구에서는 다지점 강수모의기법을 개발하였으며 비정상성 해석이 가능하도록 동역학적 강수모형을 구성하였다. 이를 한강유역 강수지점에 적용하여 모형의 적합성을 평가하였다.
Proceedings of the Korea Water Resources Association Conference
/
2017.05a
/
pp.83-83
/
2017
수자원공학에서 일강수량 모의기법은 다양한 목적으로 활용되고 있지만, 일반적으로 홍수와 가뭄의 영향을 고려할 수 있는 수공구조물의 위험도 및 신뢰성 평가 및 수자원 계획을 수립하기 위한 입력 자료생성을 목적으로 활용된다. 유역 단위의 분석시 단일 지점에 대한 강수 모의 기법을 적용할 경우 각각의 지점에서 관측된 강수 자료의 시계열 및 통계치 특성이 효과적으로 재현되지만 공간적으로 발생하는 즉, 지점 간의 종속관계를 재현하지 못하는 문제가 발생한다. 이러한 이유로 공간적인 전이 특성이 있는 가뭄 분석 및 유역내 유출량의 공간적 변동 특성 분석에 단일지점별 모의 결과를 이용할 경우 관측 자료와 상반된 공간적 변동성으로 인하여 잘못된 가뭄 및 유출 분석 결과가 도출되는 문제점이 있다. 따라서, 실제적으로 발생하는 강수 특성을 반영한 유역 단위의 홍수 및 가뭄 등의 수문 분석을 위해서는 지점간의 종속성을 반영할 수 있는 다지점 강수 모의 모형의 적용이 필수적이다. 본 연구에서는 다지점 모의에 있어서, Wilks 모형의 지점별 시변동 특성과 공간상관성 재현 능력, HMM 모형이 갖는 강수 사상별로 분포된 양적 분포 패턴 재현 능력을 복합적으로 나타낼 수 있는 새로운 다지점 일강수량 모의 모형인 기계학습 기반 범주화 기법을 이용한 다지점 일강수량 모의 모형(ML-MRS)을 개발하였다. 또한, 지점별 강수량에 적용되는 확률분포모형은 Gamma 분포로 구성된 혼합모형을 적용하여 단일 확률 분포 모형의 자료 적합 문제를 개선하였다. 모의를 통한 일강수량 시계열 자료는 일 강수자료의 통계량을 효과적으로 모의하였으며, 다지점 모형의 모의 결과를 적용한 가뭄 모의 결과 관측 자료에서 나타나는 공간적 패턴이 재현되었다. 본 모형은 시 공간적 사상을 효과적으로 재현함으로서 지역의 변동특성을 반영한 가뭄, 홍수, 기상 현상 분석 등 활용도가 매우 높을 것으로 판단된다.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.363-363
/
2021
수자원설계 및 계획 시 제한된 강우자료로 인해 나타나는 한계를 개선하기 위한 목적으로 추계학적 강수모의 모형을 활용한다. 대표적인 추계학적 강수모형으로 Bartlett-Lewis Rectangular Pulse Modified Model(BLPRM)과 Neyman-Scott Rectangular Pulse Model(NSRPM) 등이 활용되고 있으며, 관측강수량의 통계적 모멘트를 재현할 수 있도록 모형 매개변수를 최적화하는 과정이 필수적으로 요구된다. 기본적으로 모형 매개변수들의 조합을 통해 추정되는 통계적 모멘트와 관측값의 통계적 모멘트를 반복적으로 비교하면서 최적 매개변수를 추정하게 된다. 그러나 상대적으로 적은 관측값을 이용하여 매개변수를 추정하기 때문에, 매개변수 추정이 어려울 뿐만 아니라 매개변수의 불확실성도 큰 특징을 가지고 있다. 모형 매개변수 추정과정에서 다양한 목적함수가 활용되고 있으나, 고려되는 통계적 모멘트가 평균 및 분산 등 2차 모멘트에 제한되고 있어 극치강수량에 대한 재현성은 상대적으로 부족한 부분이 있다. 본 연구에서는 3차 모멘트를 포함한 목적함수를 활용하여 NSRP모형 매개변수를 추정하고, 기존 2차 모멘트를 이용한 매개변수 접근방법과 극치강수량 재현 측면에서 비교를 수행하였다. 최종적으로 유역 단위에서 극치강수량 재현효과를 평가하기 위해서는 면적강수량 추정이 매우 중요하며, 본 연구에서는 이러한 점을 감안하여 강우 지점 간의 상관성을 유지하면서 강우모의가 가능한 다지점 NSRP 모형과 연계하여 극치강우 재현 가능성을 평가하였다.
Proceedings of the Korea Water Resources Association Conference
/
2012.05a
/
pp.123-123
/
2012
일강수량은 수공구조물 설계 및 수자원계획을 수립하기 위한 입력 자료로 이용된다. 일반적으로 수자원계획은 장기적인 목적을 가지고 수행되어지며, 장기간의 일강수량 자료를 필요로 한다. 하지만 장기간의 일강수량 자료의 획득의 어려움으로 단기간의 일강수량자료를 이용하여 모의한 장기간 강수자료를 이용하게 된다. 이처럼 수자원계획의 수립에 있어서 일강수량 모의기법의 성능은 수자원계획의 신뢰성 및 결과에 큰 영향을 준다. 일강수량 모의기법은 국내외적으로 매우 활발하게 이루어지고 있으며, 수자원계획 및 수공구조물 설계 외에도 매우 다양한 목적으로 활용되어 지고 있다. 일강수량을 모의기법 중 강수계열의 단기간의 기억(memory)을 활용한 Markov Chain 모형이 가장 일반적이지만, 기존 Markov Chain 모형을 통한 일강수량 모의는 극치강수량을 재현하기 어렵다는 문제점이 있다. 또한, 일강수량 모의 기법의 목적인 수자원계획 및 수공구조물 설계 등의 입력자료로 활용되어지기 위해서는 모의 결과가 유역내 지점별 공간 상관성을 재현함으로써 모형의 우수성과 자료결과의 신뢰성을 확보할 수 있어야 하겠다. 이러한 점에서 본 연구에서는 내삽에서 우수한 재현능력을 갖는 핵 밀도함수와 극치강수량 재현에 유리한 GPD분포의 특징을 함께 고려할 수 있는 불연속 Kernel-Pareto Distribution 기반에 공간상관성 재현 알고리즘을 결합한 일강수량모의기법을 개발하였다. 한강유역의 18개 강수지점에 대해서 기존 Gamma분포를 사용한 Markov Chain 모형과 본 연구에서 제안한 방법을 적용하여 모형을 평가해 보고자 한다. Gamma 분포기반 Markov Chain 모형의 경우 일강수량 모의 시 1차모멘트인 평균과 2-3차 모멘트 모두 효과적으로 재현하지 못하는 문제점이 나타났다. 그러나 본 연구에서 적용한 다지점 불연속 Kernel-Pareto 분포 모형은 강수계열의 평균적인 특성뿐만 아니라 표준편차 및 왜곡도의 경우에도 관측치의 통계특성을 매우 효과적으로 재현하며, 100년빈도 강수량 모의결과 기존 모의모형의 문제점을 보완할 수 있는 개선된 결과를 보여주었다. 본 연구에서 제시한 방법론은 유역내의 공간상관성을 재현하며, 평균 및 중간값 등 낮은 차수의 모멘트 등 일강수량 분포특성을 더욱 효과적으로 모의할 수 장점을 확인하였다.
A long-term precipitation record is typically required for establishing the reliable water resources plan in the watershed. However, the observations in the hourly precipitation data are not always consistent and there are missing values within the time series. This study aims to develop a hourly rainfall simulator for extending rainfall data, based on the well-known Neyman-Scott Rectangular Pulse Model (NSRPM). Moreover, this study further suggests a multisite hourly rainfall simulator to better reproduce areal rainfalls for the watershed. The proposed model was validated with a network of five weather stations in the Uee-stream watershed in Seoul. The proposed model appeared a reasonable result in terms of reproducing most of the statistics (i.e. mean, variance and lag-1 autocovariance) of the rainfall time series at various aggregation levels and the spatial coherence over the weather stations.
KSCE Journal of Civil and Environmental Engineering Research
/
v.29
no.5B
/
pp.397-408
/
2009
In this study, a stochastic precipitation generation framework for simultaneous simulation of daily precipitation at multiple sites is presented. The precipitation occurrence at individual sites is generated using hybrid-order Markov chain model which allows higher-order dependence for dry sequences. The precipitation amounts are reproduced using Anscombe residuals and gamma distributions. Multisite spatial correlations in the precipitation occurrence and amount series are represented with spatially correlated random numbers. The proposed model is applied for a network of 17 locations in the middle of Korean peninsular. Evaluation statistics are reported by generating 50 realizations of the precipitation of length equal to the observed record. The analysis of results show that the model reproduces wet day number, wet and dry day spell, and mean and standard deviation of wet day amount fairly well. However, mean values of 50 realizations of generated precipitation series yield around 23% Root Mean Square Errors (RMSE) of the average value of observed maximum numbers of consecutive wet and dry days and 17% RMSE of the average value of observed annual maximum precipitations for return periods of 100 and 200 years. The provided model also reproduces spatial correlations in observed precipitation occurrence and amount series accurately.
Proceedings of the Korea Water Resources Association Conference
/
2010.05a
/
pp.1425-1428
/
2010
추계학적 기상모형(Stochastic weather generator)은 기상자료의 결측치 보완, 장기간의 기상 시계열 자료 생성, 지역적 기후변화 시나리오의 통계학적 다운스케일링에 적용되어 왔다. 이러한 추계학적 기상모형은 수자원, 농업, 환경, 생태 등의 분야에 적용되어, 수자원 설계, 점/비점오염 거동, 생태 및 수문학적 영향 평가의 중요한 도구로 이용되어 오고 있다. 또한, 최근 가장 큰 이슈가 되고 있는 기후변화의 영향을 평가하는데 필수불가결한 분야이다. 이 분야의 중요한 변화는 과거에는 지점별로 각각 기상자료를 생성하였으나, 최근에는 지점간의 상관성을 고려한 다지점 해석이 계속적으로 연구되어지고 있다. 본 연구에서는 유역규모에 적용하기 타당한 기상자료생성을 위하여 관측지점간의 상관성, 강수장(rainfall field)의 생성, 호우이동(storm movement)을 고려한 추계학적 기상모형을 제안하고, 충주댐 유역을 대상으로 그 적용성을 평가하였다.
Journal of the Korean Association of Geographic Information Studies
/
v.21
no.3
/
pp.104-118
/
2018
This study is to evaluate the accuracy improvement of the model using SWAT(Soil and Water Assessment Tool) model and multi - point hydrological observation data. The watershed is located in the Yongdam Dam($930.4km^2$), the Donghyang($165.5km^2$), the Chuncheon($290.9km^2$), the Juchun($57.8km^2$) and the Seokjeong($80.5km^2$). The watershed covers 70.0 % forest. In order to improve the accuracy of the model, precipitation data were used from two weather stations(Jangsu, Geumsan) and 16 AWS stations daily precipitation data(2003~2011) managed by KMA, MLIT, and K-water. Based on the reliable data of the Yongam test basin in 2003~2011, the runoff of single point (Yongdam dam) and multi-point (Donghyang, Chuncheon, Jucheon, Seokjeong). Simulation results show that the $R^2$ of the single subwatershed (Donghyang, Chuncheon, Jucheon, Seokjeong) is single point(0.84) and multipoint(0.88). For model efficiency coefficient of Nash-Sutcliffe at single point(0.45) and multipoint(0.70).
Proceedings of the Korea Water Resources Association Conference
/
2011.05a
/
pp.371-371
/
2011
본 연구에서는 한강유역 내 관측기간이 충분한 기상청 지상관측소 10개소를 선정하고 CCCma(Canadian Century for Climate modeling and analysis)에서 제공하는 자료에 대한 인공신경망기법 상세화 적용을 실시하였다. 인공신경망의 학습을 위해 CGCM3.1/T63 20C3M시나리오(reference scenario)의 22개 2D변수 중 물리적으로 민감도가 높다고 판단되는 GCM_Prec, huss, ps를 입력변수로 선정하였으며 인공신경망 학습기간은 1991년~1995년, 검증기간은 1996년~2000년, 예측기간은 2011년~2100년으로 A1B, A2 B1 시나리오 등 다양한 기후변화 시나리오를 통해 예측band를 제시하고자 하였다. 하지만 공간상관을 고려하기 위하여 각 관측소에 대하여 인공신경망 학습을 하는 경우 관측소간 spatial correlation 및 spatial cluster구현이 어렵기 때문에 Spatial Rectangular Pulse모형을 이용하고자 하였으나, 강수면적에 대한 scale의 결정이 어렵다는 단점을 확인 하고 본 연구에서는 Random Cascade 모형을 이용하여 ${\beta}$를 통한 강수면적 scale(rainy area fraction)을 결정하고자 하였다. Random Cascade모형의 기법은 격자단위의 downscaling기법으로 강수대의 공간적 형상을 재현하며 스케일에 비종속적인(scale-invariant)프랙탈 특성을 이용하여 매개변수를 최소화 할 수 있는 장점을 가진 기법으로 한강유역 1Km내외 강우장을 만들어 topographic effect를 첨가하고자 한다.
Proceedings of the Korea Water Resources Association Conference
/
2012.05a
/
pp.948-948
/
2012
합천댐유역에 대한 기후변화에 따른 수문학적 영향을 정량적으로 분석하기 위해, 기상청에서 제공하는 공간해상도 27km의 MM5 RCM(Regional Climate Model)을 사용하였다. RCM의 기상변수들은 공간적 스케일의 상이성과 RCM 기후변수들의 불확실성 때문에 유출모형인 SWAT의 입력자료로 사용하기에는 어려움이 있다. 특히, RCM 변수들 중 강수량의 경우 한반도 지역의 6월과 10월 사이에 연강수량의 67%이상이 집중되는 계절성을 반영하지 못하고 있는 실정이기 때문에 국내 유역의 유출량 산정에 사용하기 위해서는 지역적 상세화(Downscaling)가 필요하다. 본 연구에서는 RCM 기후변수에 내포된 공간적 스케일의 상이성과 불확실성을 최소화하기 위해 강우관측소 지점을 단위로 한 다지점 인공신경망 기법을 적용하여 강수량, 습도, 최고기온 및 최저기온에 대한 상세화를 실시하였다. 강수의 경우 여름철 태풍사상을 모의하기 위한 Stochastic Typhoon Simulation기법과 Baseline(1991~2010)과 Projection(2011~2100) 사이의 강수량 보정을 위한 Dynamic Quantile Mapping 기법을 적용하여, 강수량의 불확실성을 최소화 하고자 하였다. 상세화된 기후자료를 이용한 SWAT 모형의 일(Daily) 단위 강우-유출 모의결과를 2011~2040년, 2041~2070년, 2071~2100년으로 구분하여 추세분석을 실시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.