본 연구는 영상검지기에서 수집되는 정보를 활용하여 딥러닝 기반으로 대기행렬길이를 예측하는 모형을 개발하였다. 그리고 통계적 기법인 다중회귀 모형을 추정하여 평균절대오차와 평균제곱근오차의 두 지표를 이용하여 비교·평가하였다. 다중회귀분석 결과, 시간, 요일, 점유율, 버스 교통량이 유효한 변수로 도출되었고, 이 중에서 독립변수들의 종속변수에 대한 영향력은 점유율이 가장 큰 것으로 나타났다. 딥러닝 최적 모형은 은닉층이 4겹, Look Back이 6으로 결정되었고, 평균절대오차와 평균제곱근오차가 6.34와 8.99로 나타났다. 그리고 두 모형을 평가한 결과, 다중회귀 모형과 딥러닝 모형의 평균절대오차는 각각 13.65와 6.44, 평균제곱근오차는 각각 19.10과 9.11로 계산되었다. 이는 딥러닝 모형이 다중회귀 모형과 비교하여 평균절대오차가 52.8%, 평균제곱근오차는 52.3% 감소된 결과이다.
우리 나라의 딸기 수경재배 면적은 2002년 5ha로 시작해서, 2007년에는 84ha, 2012년에는 317ha, 2017년에 1,575ha로 매년 30% 이상 급속하게 성장하고 있다. 이런 경향은 수경재배가 토양재배보다 작업이 용이하여 노동시간이 절약되며, 수량을 더 많이 생산할 수 있기 때문이다. 하지만, 공급양액을 배액으로 흘려버리는 비순환식 수경재배 방식이 증가 하면서 환경오염을 유발시킬 뿐만 아니라 수경재배 운영비용의 증가를 가져오고 있다. 본 논문은 작물 생장에 최적화된 양액공급을 위해 상관관계 분석 및 다중 선형 회귀 모델 기반의 딸기 수경재배 환경에서의 최적 양액 흡수량을 분석하고 추정해 보았다. 분석 결과, 수경재배 환경정보(일사량, 온도, 습도, CO2 등)를 대상으로 일사량 및 온도가 습도 및 CO2에 비해 딸기재배를 위한 양액 흡수량에 더 큰 영향을 주는 것으로 분석되었고, 다중 선형 회귀 모델을 통한 회귀식의 R-Square값은 0.358으로 나타났다.
본 연구는 공과대학 학생들이 온라인 학습을 진행하였을 때 노트 필기를 병행하며 학습을 하는 경우에 대해 학습 효과 및 만족도, 집중력에 미치는 영향에 대해 연구하였다. 온라인 학습에서 학습 도구로 사용하기 위한 양식으로 코넬노트를 사용하였다. 설문 조사 결과, 학생들은 온라인 학습에서의 노트 필기가 수업 참여의 성실성, 적극성, 집중력에 도움이 되는 것으로 파악되었다. 통계 분석 결과, 노트 필기 제출 횟수와 학업성취도와의 양의 상관관계를 확인하였으며 단일/다중 회귀분석을 통해서 노트 필기 제출 횟수와 학업 성취도가 통계적으로 유의미함을 확인하였다. 다중 회귀 분석 결과, 평균적으로 학생들의 노트 필기 제출 횟수가 1회 증가할 경우, 이는 중간고사 점수 0.253점, 기말고사 점수 0.287점 상승에 통계적으로 유의미한 것을 확인하였다. 부트스트래핑 회귀분석을 실시한 결과에서도 필기노트 제출 횟수가 성적과도 유의미한 결과를 얻어 단일/다중회귀 분석의 결과가 적정함을 확인하였다. 온라인 상에서 강의를 수강하며 노트를 필기하고 온라인 제출함으로써 온라인 수업에서 학습의 질을 높일 수 있는 수업 전략이 될 수 있음을 확인하였다.
선형회귀모형의 학습은 일반적으로 자료의 개수가 설명변수의 개수보다 충분히 크고, 설명변수들 사이에 심각한 다중공선성이 없다는 가정 하에서 안정적으로 이루어진다. 본 연구에서는 이러한 가정이 위배되었을 경우 모형 학습의 어려움을 실제 호우피해자료를 분석함으로써 조명하였고, 이를 해결하기 위해 자료를 통합한 다음 주성분회귀모형 또는 능형회귀모형을 사용할 것을 검토하였다. 모형의 학습에 사용된 자료와 별도의 독립된 자료에서 제안된 모형들의 예측력을 평가하였고, 제안된 방법이 선형회귀모형보다 더 나은 예측력을 보이는 것을 확인하였다.
최근 수위 예측을 위한 개념적 기반, 수문학적, 물리적 기반 모형 등의 단점을 극복하고자 홍수예측을 위해 자료지향형 모형 중의 하나인 다중선형회귀 모형이 널리 도입되고 있다. 본 연구의 목적은 이러한 다중선형회귀 모형의 서로 다른 회귀계수 선정 방법에 따른 홍수예측 성능을 비교 검토하고 이를 통해 적절한 다중회귀 홍수예측 모형을 구축하는 것이다. 이를 위해 입력자료의 자기상관분석을 통해 독립변수의 시간 규모를 결정한 후 최소 자승법, 가중 최소 자승법, 단계별 선택법의 각기 다른 회귀계수 산정 방법을 이용한 홍수예측 모형을 구축하고 중랑천 유역의 다양한 홍수사상에 대해 적용하였다. 구축된 모형들의 성능을 평가하기 위해 평균제곱근오차, Nash-Suttcliffe 효율계수, 평균절대오차, 수정 결정계수와 같이 4개의 통계지표들을 사용하였다. 모의결과 단계별 선택법을 이용한 다중선형회귀 홍수예측 모형이 가장 정확한 예측 결과를 보였고, 최소자승법을 이용한 홍수예측 모형이 가중 최소자승법을 이용한 홍수예측 모형보다 좀 더 나은 예측 결과를 나타냈다.
Journal of the Korean Data and Information Science Society
/
제27권1호
/
pp.1-8
/
2016
최근 강력 범죄 및 우발 범죄가 끊이지 않고 있으면서 사회적 불안감이 고조되고 있다. 이에 따라 방범용 카메라, CCTV (Closed Circuit Television)가 범죄 증거 확보와 치안을 위해 사용되고 있다. 그러나 CCTV는 주로 사후 처리 기능으로 사용하고 있으며 사전에 범죄를 예방하기는 힘들다. 본 연구에서는 CCTV로부터 수집된 보행자 데이터를 이용하여 객체의 행동을 분석하고 위험 행동 여부를 추정하기 위한 유연성 다중 회귀 모델을 제안한다. 유연성 다중 회귀 모델은 필터링, 상황분석, 예측 단계로 구성되어 있다. 먼저 보행자에 대한 환경과 상황에 대해 필터링한 후 상황분석에 대한 정보를 구축하고 관찰 객체에 이상 행동이 결정된다. 마지막으로 연관분석을 통해 객체의 행동이 예측되어 위협 상황을 통지한다. 이를 통해 다중 지역에서 객체의 행동을 추적하여 객체 행동의 위험여부를 알 수 있으며, 행동 예측을 통해 범죄 발생을 예측 가능하다.
다변량 통계 분석법(Multivariate statistical analysis method)의 대표적 방법인 다중 선형 회귀법(Multiple linear regression. MLR)을 이용하여 2성분계 혼합물의 인화점을 회귀 분석하고 예측하였다. 가연성 물질의 인화점에 대한 예측은 실제 화학 공정 설계에서 화재 및 폭발 위험성을 판단하는 중요한 부분 중의 하나이다. 본 연구에서는 순수 성분의 물성 자료만을 이용하여 2성분계 혼합물의 인화점 실험 자료에 대해 다중 선형 회귀법(MLR)을 수행하였고, 이를 이용하여 새로운 혼합물에 대한 인화점을 예측하였다. 2성분계 혼합물의 인화점에 대한 MLR의 회귀 성능과 새로운 혼합물에 대한 예측 성능을 알아보기 위해, 기존의 인화점 추정 방법인 Raoult의 법칙과 Van Laar식에 의한 추정값과 비교해 보았다.
홍수를 예측하기 위해서 국내 5대강 유역의 홍수통제소는 저류함수모형을 사용하고 있으며 현재까지 홍수예측에 대한 많은 연구가 이루어지고 있다. 이에 본 논문에서는 현재 홍수통제소에서 사용되고 있는 저류함수모형과 과거의 강우-수위 관계를 이용한 회귀분석(regression analysis), 그리고 인공신경망(artificial neural network)을 이용하여 홍수를 예측하고 이를 비교, 분석하고자 하였다. 저류함수모형의 경우는 홍수통제소의 대표매개변수와 보정된 최적(평균)매개변수를 적용하였다. 그리고 회귀분석과 인공신경망은 1995~2001년까지의 홍수사상 중 4개의 홍수사상을 선택하여 회귀계수를 구하고 역전파(backpropagation) 알고리즘을 사용하여 학습을 시켰다. 그 결과 저류함수모형의 경우 최적 매개변수를 이용하였을 때 기존의 홍수통제소에서 사용하고 있는 대표매개변수보다 예측이 개선되었으며, 회귀분석의 방법인 다중회귀분석, Robust 회귀분석, Stepwise 회귀분석을 이용한 홍수예측은 비교적 정확한 결과를 얻을 수 있었다. 역전파 알고리즘을 사용한 인공신경망의 경우도 회귀분석을 이용한 홍수예측보다는 다소 못하였지만 정확한 결과를 얻을 수 있었다.
본 연구는 호텔산업의 관리회계 변수 중, 판매객실 수와 점유율이라는 두 개의 변수를 독립변수로 설정하여, 두 변수가 호텔 매출에 영향을 미치는지를 파악한다. 본 연구를 위해 통계분석 기법 중, 단순 회귀분석과 다중 회귀분석을 사용하였고, 선택된 두 변수가 호텔매출에 중요한 역할을 하는지 평가하였다. 분석 결과, 다중회귀분석에서 호텔 점유율은 호텔매출에 통계적으로 유의한 영향을 미치지 않았다. 시사점으로서 향후 연구를 통해 호텔매출 성장에 영향을 미치는 요인들을 심도있게 분석하여 학계에 이바지할 수 있는 학자들의 노력이 필요하다.
본 연구에서는 금강권역을 대상으로 최대 12개월까지 선행예측이 가능한 월 강수량 예측모형을 구축하였으며, 예측모형 구축에는 다중회귀분석과 인공신경망의 두 가지 통계적 기법을 적용하였다. 예측인자 후보로 NOAA에서 제공하는 글로벌 기후패턴 39종과 금강권역에 대한 기상인자 8종 등 총 47종의 기후지수를 활용하였다. 예측대상월을 기준으로 과거 40년간의 월 강수량과 기후지수와의 지연상관성 분석을 통해 상관도가 높은 기후지수를 예측인자로 활용하여 다중회귀모형 및 인공신경망 모형을 구축하였다. 1991~2021년에 대해 매월 예측결과의 평균값과 관측값과의 적합도를 분석한 결과, 다중회귀모형은 PBIAS -3.3~-0.1%, NSE 0.45~0.50, r 0.69~0.70으로 분석되었으며, 인공신경망모형은 PBIAS -5.0~+0.5%, NSE 0.35~0.47, r 0.64~0.70로, 다중회귀모형에 의해 도출된 예측치의 평균값이 인공신경망모형보다 관측치에 좀 더 근접한 것으로 나타났다. 각 월의 예측범위 안에 관측치가 포함될 확률을 분석한 결과에서는 다중회귀모형이 57.5~83.6%(평균 72.9%), 인공신경망모형의 경우에는 71.5~88.7%(평균 81.1%)로 인공신경망모형 결과가 우수한 것으로 나타났다. 3분위 예측확률을 비교한 결과는 다중회귀모형의 경우에는 25.9~41.9%(평균 34.6%), 인공신경망모형은 30.3~39.1%(평균 34.7%)로 비슷하며, 두 모형 모두 평균 33.3% 이상으로 월 강수량에 대한 장기예측성을 확인 할 수 있었다. 이상과 같이 두 모형의 예측성 차이는 비교적 크지 않은 것으로 나타났으나, 예측범위에 대한 적중률이나 3분위 예측확률로부터 판단할 때 예측성에 대한 월별 편차는 인공신경망모형의 결과가 상대적으로 작게 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.