• Title/Summary/Keyword: 다중 유저 다중 안테나

Search Result 4, Processing Time 0.016 seconds

Power Allocation Algorithms for ZF-THP Sum Rate Optimization in Multi-user Multi-antenna Systems (ZF-THP를 이용한 다중 안테나 다중 사용자 시스템에서 전송률 합 최적화를 위한 전력 할당 알고리즘)

  • Lee, Wookbong;Song, Changick;Lee, Sangrim;Lee, Kilbom;Kwak, Jin Sam;Lee, Inkyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.9
    • /
    • pp.753-761
    • /
    • 2012
  • In this paper, we study a power allocation technique for Tomlinson-Harashima precoding (THP) in multi-user multiple input single output (MISO) downlink systems. In contrast to previous approaches, a mutual information based method is exploited for maximizing the sum rate of zero-forcing THP systems. Then, we propose a simple power allocation algorithm which assigns proper power level for modulo operated users. Simulation results show that the proposed scheme outperforms a conventional water-filling method, and it provides similar performance with near optimal method with much reduced complexity.

Beamforming Games with Quantized CSI in Two-user MISO ICs (두 유저 MISO 간섭 채널에서 불완전한 채널 정보에 기반한 빔포밍 게임)

  • Lee, Jung Hoon;Lee, Jin;Ryu, Jong Yeol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1299-1305
    • /
    • 2017
  • In this paper, we consider a beamforming game between the transmitters in a two-user multiple-input single-output interference channel using limited feedback and investigate how each transmitter is able to find a modified strategy from the quantized channel state information (CSI). In the beamforming game, each of the transmitters (i.e., a player) tries to maximize the achievable rate (i.e., a payoff function) via a proper beamforming strategy. In our case, each transmitter's beamforming strategy is represented by a linear combining factor between the maximum ratio transmission (MRT) and the zero forcing (ZF) beamforming vectors, which is the Pareto optimal achieving strategy. With the quantized CSI, the transmitters' strategies may not be valid because of the quantization errors. We propose a modified solution, which takes into account the effects of the quantization errors.

Performance Analysis for MIMO Multiuser Systems considering Selection of Transmit Antennas, Constellations and Powers in Low-to-medium Mobile Speed (중저속 이동체환경에서의 MIMO시스템 기반 안테나 선택과 전력할당 성능분석)

  • Yoo Hyun;Kim Jin-Su;Kim Jong-Ki;Seo Myoung-Seok;Kwak Kyung-Sup
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.776-781
    • /
    • 2005
  • In this paper, using received channel information, we analyze performance in MIMO multiuser system in low-to-medium mobile speed by selecting each user's constellations, powers, and transmit antennas. Given a target of symbol error, we determine each user's constellations, powers, selected tranprobability smit antennas such that the required signal-to-noise(SNR) is minimized for MMSE, V-BLAST receiver according to each user's information and channel estimation information. When we do power control with antenna selection technique through uplink channels of MIMO system in low-to-medium mobile speed, we analyze system performance with wireless channel information from Base-Station(BS) to Users. By simulation, it has been shown that the proposed antenna selection scheme for transmitting data offer better performance improvement than all transmit antennas for transmitting data.

  • PDF

Interference Space Reuse and the Adoption Strategy through QoS Constraints in Three-Cell Downlink MIMO Interference Channels (3-Cell 하향링크 MIMO 간섭 채널에서의 간섭 공간 재활용 및 QoS Constraint에 따른 그 적용 방안)

  • Yoon, Jangho;Lee, Hwang Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.12
    • /
    • pp.1093-1105
    • /
    • 2012
  • We propose an interference space reuse (ISR) algorithm for the MU-MIMO design in 3-cell downlink interference channels. Also, we provide a strategy for the adoption of the ISR scheme in the cellular network. In the multicell interference channels, the cell edge users may undergo severe interferences and their signals should be protected from the interferers for reliable transmissions. However, the intra cell users do not only experience small interferences but also they require small transmission power for stable communication. We provide a vector design algorithm based on ISR, where intra cell users are served through reusing the cell edge users' interference space. The performance enhancement reaches 20% compared to the fractional frequency reuse (FFR) scheme combined with IA through the scheduling between the cell edge users and the intra cell users. Also, it can be used to enhance the cell edge throughput when the quality of service (QoS) requirements of the intra cell users are fixed.