• Title/Summary/Keyword: 다중 에이전트 학습

Search Result 51, Processing Time 0.025 seconds

Implementation of the Agent using Universal On-line Q-learning by Balancing Exploration and Exploitation in Reinforcement Learning (강화 학습에서의 탐색과 이용의 균형을 통한 범용적 온라인 Q-학습이 적용된 에이전트의 구현)

  • 박찬건;양성봉
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.7_8
    • /
    • pp.672-680
    • /
    • 2003
  • A shopbot is a software agent whose goal is to maximize buyer´s satisfaction through automatically gathering the price and quality information of goods as well as the services from on-line sellers. In the response to shopbots´ activities, sellers on the Internet need the agents called pricebots that can help them maximize their own profits. In this paper we adopts Q-learning, one of the model-free reinforcement learning methods as a price-setting algorithm of pricebots. A Q-learned agent increases profitability and eliminates the cyclic price wars when compared with the agents using the myoptimal (myopically optimal) pricing strategy Q-teaming needs to select a sequence of state-action fairs for the convergence of Q-teaming. When the uniform random method in selecting state-action pairs is used, the number of accesses to the Q-tables to obtain the optimal Q-values is quite large. Therefore, it is not appropriate for universal on-line learning in a real world environment. This phenomenon occurs because the uniform random selection reflects the uncertainty of exploitation for the optimal policy. In this paper, we propose a Mixed Nonstationary Policy (MNP), which consists of both the auxiliary Markov process and the original Markov process. MNP tries to keep balance of exploration and exploitation in reinforcement learning. Our experiment results show that the Q-learning agent using MNP converges to the optimal Q-values about 2.6 time faster than the uniform random selection on the average.

Study for Feature Selection Based on Multi-Agent Reinforcement Learning (다중 에이전트 강화학습 기반 특징 선택에 대한 연구)

  • Kim, Miin-Woo;Bae, Jin-Hee;Wang, Bo-Hyun;Lim, Joon-Shik
    • Journal of Digital Convergence
    • /
    • v.19 no.12
    • /
    • pp.347-352
    • /
    • 2021
  • In this paper, we propose a method for finding feature subsets that are effective for classification in an input dataset by using a multi-agent reinforcement learning method. In the field of machine learning, it is crucial to find features suitable for classification. A dataset may have numerous features; while some features may be effective for classification or prediction, others may have little or rather negative effects on results. In machine learning problems, feature selection for increasing classification or prediction accuracy is a critical problem. To solve this problem, we proposed a feature selection method based on reinforced learning. Each feature has one agent, which determines whether the feature is selected. After obtaining corresponding rewards for each feature that is selected, but not by the agents, the Q-value of each agent is updated by comparing the rewards. The reward comparison of the two subsets helps agents determine whether their actions were right. These processes are performed as many times as the number of episodes, and finally, features are selected. As a result of applying this method to the Wisconsin Breast Cancer, Spambase, Musk, and Colon Cancer datasets, accuracy improvements of 0.0385, 0.0904, 0.1252 and 0.2055 were shown, respectively, and finally, classification accuracies of 0.9789, 0.9311, 0.9691 and 0.9474 were achieved, respectively. It was proved that our proposed method could properly select features that were effective for classification and increase classification accuracy.

A slide reinforcement learning for the consensus of a multi-agents system (다중 에이전트 시스템의 컨센서스를 위한 슬라이딩 기법 강화학습)

  • Yang, Janghoon
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.4
    • /
    • pp.226-234
    • /
    • 2022
  • With advances in autonomous vehicles and networked control, there is a growing interest in the consensus control of a multi-agents system to control multi-agents with distributed control beyond the control of a single agent. Since consensus control is a distributed control, it is bound to have delay in a practical system. In addition, it is often difficult to have a very accurate mathematical model for a system. Even though a reinforcement learning (RL) method was developed to deal with these issues, it often experiences slow convergence in the presence of large uncertainties. Thus, we propose a slide RL which combines the sliding mode control with RL to be robust to the uncertainties. The structure of a sliding mode control is introduced to the action in RL while an auxiliary sliding variable is included in the state information. Numerical simulation results show that the slide RL provides comparable performance to the model-based consensus control in the presence of unknown time-varying delay and disturbance while outperforming existing state-of-the-art RL-based consensus algorithms.

Multi-Certification of Agent System Using XML (XML 전자서명을 이용한 다중인증 멀티 에이전트시스템)

  • J. Kim, Kui-Nam
    • Convergence Security Journal
    • /
    • v.5 no.1
    • /
    • pp.29-34
    • /
    • 2005
  • Internet becomes absolutely necessary tools due to rapid progress of information technology. Educational correspondence about an age of information demand is focused on a learner and remote education based on information technology WBI(Web Based Instruction) is a formation that remotly educate a learner using web, possible mutual reaction between instructor and learner, submit various studying material, has a good point to overcome spatial restriction. Internal and external standardization working is accelerated and recently XML security studies are activated using XML which is next generation web standard document format. In this paper, we propose multi-Certification of agent system using XML digital signature to satisfy security requirement.

  • PDF

Hierarchical Organization of Neural Agents for Distributed Information Retrieval (분산 정보 검색을 위한 신경망 에이전트의 계층적 구성)

  • Choi, Yong S.
    • The Journal of Korean Association of Computer Education
    • /
    • v.8 no.6
    • /
    • pp.113-121
    • /
    • 2005
  • Since documents on the Web are naturally partitioned into many document databases, the efficient information retrieval (IR) process requires identifying the document databases that are most likely to provide relevant documents to the query and then querying the identified document databases. We first introduce a neural net agent for such an efficient IR, and then propose the hierarchically organized multi-agent IR system in order to scale our agent with the large number of document databases. In this system, the hierarchical organization of neural net agents reduced the total training cost at an acceptable level without degrading the IR effectiveness in terms of precision and recall. In the experiment, we introduce two neural net IR systems based on single agent approach and multi-agent approach respectively, and evaluate the performance of those systems by comparing their experimental results to those of the conventional statistical systems.

  • PDF

Design of a Multiagent-based Comparative Shopping System (멀티 에이전트 기반 비교 쇼핑 시스템 설계)

  • 신주리;한상훈;이건명
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.122-124
    • /
    • 2000
  • 이 논문에서는 보다 효과적이고 편리한 서비스를 제공할 수 잇는 전자상거래를 위한 다중 에이전트 기반의 확장된 비교 쇼핑 시스템을 제안한다. 이 시스템은 웹 크로울링(web crawling)을 통해 비교 쇼핑 시스템의 대상이 되는 웹사이트들의 페이지 추출 정보를 입수한다. 각 쇼핑 사이트에서는 정보 추출을 위한 중심이 되는 랩퍼(wraper) 기술은 먼저 정보가 있는 페이지를 가려내고, 정보가 있다고 판명되는 페이지들에서 상품 정보의 위치 즉, 반복되는 패턴(pattern)을 추출하여 필요한 상품 기술 단위 정보를 뽑아내는 학습 알고리즘이며, 각 사이트에 맞게 만들어진 랩퍼 에이전트(wrapper agent)에 대해 유효성을 검사하는 방법론을 제시한다. 또한, 학습 시 필요한 지식(knowledge)으로서의 디렉토리(directory) 구성은 미리 만들어진 표준 카테고리(category)와 용어(terminology) 존재하에 제한적이나마 새로운 디렉토리 요소에 대해 자동으로 확장할 수 있는 방법론을 제안한다.

  • PDF

Design of Adaptive Electronic Commerce Agents Using Machine Learning Techniques (기계학습 기반 적응형 전자상거래 에이전트 설계)

  • Baek,, Hey-Jung;Park, Young-Tack
    • The KIPS Transactions:PartB
    • /
    • v.9B no.6
    • /
    • pp.775-782
    • /
    • 2002
  • As electronic commerce systems have been widely used, the necessity of adaptive e-commerce agent systems has been increased. These kinds of agents can monitor customer's purchasing behaviors, clutter them in similar categories, and induce customer's preference from each category. In order to implement our adaptive e-commerce agent system, we focus on following 3 components-the monitor agent which can monitor customer's browsing/purchasing data and abstract them, the conceptual cluster agent which cluster customer's abstract data, and the customer profile agent which generate profile from cluster, In order to infer more accurate customer's preference, we propose a 2 layered structure consisting of conceptual cluster and inductive profile generator. Many systems have been suffered from errors in deriving user profiles by using a single structure. However, our proposed 2 layered structure enables us to improve the qualify of user profile by clustering user purchasing behavior in advance. This approach enables us to build more user adaptive e-commerce system according to user purchasing behavior.

A Study on Sales Agent using Case-Based Reasoning for Electronic Commerce (전자 상거래를 위한 사례기반추론의 판매지우너 에이전트)

  • Sung, Baek-Gyoon;Ki, Sang-Hee;Park, Duk-Won
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.5S
    • /
    • pp.1649-1656
    • /
    • 2000
  • In this paper, We describe a design of sales agent for support for negotiation during sales support on the Internet within Case-Based Reasoning (CBR) solutions. First, We propose an multi-agent system which can effectively search complex product on the WWW. And we represent databases and case-bases and propose a CBR cycle for sales agent. We then implement some of them in a prototype for a sales agent and a case study is shown where preliminary approaches are used to negotiate with a customer about his demands and available produucts in a CBR-based Electronic Commerce solution.

  • PDF

Cooperative Multi-Agent Reinforcement Learning-Based Behavior Control of Grid Sortation Systems in Smart Factory (스마트 팩토리에서 그리드 분류 시스템의 협력적 다중 에이전트 강화 학습 기반 행동 제어)

  • Choi, HoBin;Kim, JuBong;Hwang, GyuYoung;Kim, KwiHoon;Hong, YongGeun;Han, YounHee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.8
    • /
    • pp.171-180
    • /
    • 2020
  • Smart Factory consists of digital automation solutions throughout the production process, including design, development, manufacturing and distribution, and it is an intelligent factory that installs IoT in its internal facilities and machines to collect process data in real time and analyze them so that it can control itself. The smart factory's equipment works in a physical combination of numerous hardware, rather than a virtual character being driven by a single object, such as a game. In other words, for a specific common goal, multiple devices must perform individual actions simultaneously. By taking advantage of the smart factory, which can collect process data in real time, if reinforcement learning is used instead of general machine learning, behavior control can be performed without the required training data. However, in the real world, it is impossible to learn more than tens of millions of iterations due to physical wear and time. Thus, this paper uses simulators to develop grid sortation systems focusing on transport facilities, one of the complex environments in smart factory field, and design cooperative multi-agent-based reinforcement learning to demonstrate efficient behavior control.

Implementation of A Multiple-agent System for Conference Calling (회의 소집을 위한 다중 에이전트 시스템의 구현)

  • 유재홍;노승진;성미영
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.2
    • /
    • pp.205-227
    • /
    • 2002
  • Our study is focused on a multiple-agent system to provide efficient collaborative work by automating the conference calling process with the help of intelligent agents. Automating the meeting scheduling requires a careful consideration of the individual official schedule as well as the privacy and personal preferences. Therefore, the automation of conference calling needs the distributed processing task where a separate calendar management process is associated for increasing the reliability and inherent parallelism. This paper describes in detail the design and implementation issues of a multiple-agent system for conference calling that allows the convener and participants to minimize their efforts in creating a meeting. Our system is based on the client-sewer model. In the sewer side, a scheduling agent, a negotiating agent, a personal information managing agent, a group information managing agent, a session managing agent, and a coordinating agent are operating. In the client side, an interface agent, a media agent, and a collaborating agent are operating. Agents use a standardized knowledge manipulation language to communicate amongst themselves. Communicating through a standardized knowledge manipulation language allows the system to overcome heterogeneity which is one of the most important problems in communication among agents for distributed collaborative computing. The agents of our system propose the dates on which as many participants as possible are available to attend the conference using the forward chaining algorithm and the back propagation network algorithm.

  • PDF