• Title/Summary/Keyword: 다중 시계열 모형

Search Result 43, Processing Time 0.027 seconds

An Impact of Gas Prices on Transit Demand Using a Time-series Analysis and a Regression Analysis (시계열 및 회귀분석을 활용한 휘발유가격의 광역권별·수단별 대중교통수요 영향력 비교분석)

  • Lee, Kwang Sub;Eom, Jin Ki;Moon, Dae Seop;Yang, Keun Yul;Lee, Jun
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.1
    • /
    • pp.13-26
    • /
    • 2014
  • Depending most of its energy sources on foreign countries, Korea efforts to reduce energy consumption in transportation. While studies on the relationship between gas price and transportation demand are many in number, most previous studies have focused on automobile and Seoul. This study analyzes the impact of gas price on transit (bus and subway) demand using monthly data and for various metropolitan areas (Seoul, Busan, Daejeon, Daegu and Gwangju). The research utilizes a time-series model and a multiple regression model, and calculates modal demand elasticities of gas price. The result shows that elasticities of subway demand with respect to gas price is higher than those of bus demand. In addition, elasticities of predominantly automobile cities are more likely to be more sensitive to gas price than those of cities with well-structured transit system.

A development of water demand forecasting model using multiscale analysis and SVM based nonlinear prediction model (다중스케일 분석과 SVM 비선형 예측 모형을 활용한 상수도 수요량 예측기법 개발)

  • Kwon, Hyun-Han;Kim, Min-Ji;Lee, Bong-Kuk;Koo, Ja-Yong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.367-367
    • /
    • 2012
  • 기후변화로 인해 기온, 강수량, 습도 등의 기후를 예측하고 변화하는 환경에 적응해가며 생활하고 있다. 또한 여러 가지 외부적인 요인들의 영향을 받아 상수도 시설에서의 에너지 사용량도 영향을 많이 받는다. 하지만 이러한 상수도 시설의 사용량 변화로 인해 상수도 수요량의 변화량을 예측하는데 있어서 국내 연구 및 방법이 많이 부족한 상황이다. 이에 본 연구에서는 다중스케일을 기반으로 하는 비선형 예측 모형을 개발하고자 한다. 다중스케일 분석에서도 가장 우수한 분해 능력을 가지는 Wavelet Transform을 적용하여 시계열을 분해한 후 패턴인식 기반의 비선형 예측모형인 Support Vector Machine(SVM)을 적용하였다. 상수도 수요량의 예측 과정은 다음과 같다. 첫째, 상수도 수요량 자료를 Wavelet Transform 기법을 통하여 단순화 시킨다. 둘째, Global Wavelet Spectrum을 통하여 통계적으로 의미 있는 성분만을 추출하고 이를 해석 대상으로 한다. 셋째, 특정 주기를 갖는 유의한 독립성분들에 대해서 최적 지체시간을 결정한 후 SVM모형을 통해 예측 모형을 구축한다. 넷째, 나머지 성분에 대해서도 SVM 모형을 적용하여 예측을 실시한 후 앞서 예측된 성분과 모두 결합하여 최종적으로 예측시계열을 구성한다.

  • PDF

Hourly electricity demand forecasting based on innovations state space exponential smoothing models (이노베이션 상태공간 지수평활 모형을 이용한 시간별 전력 수요의 예측)

  • Won, Dayoung;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.4
    • /
    • pp.581-594
    • /
    • 2016
  • We introduce innovations state space exponential smoothing models (ISS-ESM) that can analyze time series with multiple seasonal patterns. Especially, in order to control complex structure existing in the multiple patterns, the model equations use a matrix consisting of seasonal updating parameters. It enables us to group the seasonal parameters according to their similarity. Because of the grouped parameters, we can accomplish the principle of parsimony. Further, the ISS-ESM can potentially accommodate any number of multiple seasonal patterns. The models are applied to predict electricity demand in Korea that is observed on hourly basis, and we compare their performance with that of the traditional exponential smoothing methods. It is observed that the ISS-ESM are superior to the traditional methods in terms of the prediction and the interpretability of seasonal patterns.

A Prediction of Demand for Korean Baseball League using Artificial Neural Network (인공 신경망 모형을 이용한 한국프로야구 관중 수요 예측)

  • Park, Jinuk;Park, Sanghyun
    • Annual Conference of KIPS
    • /
    • 2017.04a
    • /
    • pp.920-923
    • /
    • 2017
  • 본 연구는 기존의 수요 예측 등의 시계열 분석에서 주로 사용되는 ARIMA 모형의 어려움을 극복하고자 인공신경망(Artificial Neural Network) 모형을 이용하여 한국 프로 야구 관중 수를 예측하였다. 인공신경망의 가장 기본적인 종류인 전방향 신경망(Feedforward Neural Network)의 초모수(Hyperparameter) 선정에 그리드 탐색(Grid Search)을 적용하여 최적의 모형을 찾고자 하였다. 훈련 자료로는 2015년 3월부터 8월까지의 일별 KBO 관중 수 자료를 대상으로 하였고, 예측력 검증을 위해 2015년 9월 관중 수를 예측하여 실제 관측값과 비교하였다. 그 결과, 그리드 탐색법에서 최적 모형이라고 판단한 모형의 예측력은, 평균 절대 백분율 오차(MAPE) 기준으로 평균 27.14% 였다. 또한, 앙상블 기법에서 착안하여 오차율이 낮은 모형 5개의 예측값 평균의 MAPE는 평균 28.58% 였다. 이는 다중회귀와 비교해보았을 때, 평균적으로 각각 14%, 13.6% 높은 예측력을 보이고 있다.

A study on solar irradiance forecasting with weather variables (기상변수를 활용한 일사량 예측 연구)

  • Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.6
    • /
    • pp.1005-1013
    • /
    • 2017
  • In this paper, we investigate the performances of time series models to forecast irradiance that consider weather variables such as temperature, humidity, cloud cover and Global Horizontal Irradiance. We first introduce the time series models and show that regression ARIMAX has the best performance with other models such as ARIMA and multiple regression models.

Forecasting Total Marine Production through Multiple Time Series Model

  • Cho, Yong-Jun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.1
    • /
    • pp.63-76
    • /
    • 2006
  • Marine production forecasting in fisheries is a crucial factor for managing and maintaining fishery resources. Thus this paper aims to generate a forecasting model of total marine production. The most generally method of time series model is to generate the most optimal single forecasting model. But the method could induce a different forecasting results when it does not properly infer a model To overcome the defect, I am trying to propose a single forecasting through multiple time series model. In other word, by comparing and integrating the output resulted from ARIMA and VAR model (which are typical method in a forecasting methodology), I tried to draw a forecasting. It is expected to produce more stable and delicate forecasting prospect than a single model. Through this, I generated 3 models on a yearly and monthly data basis and then here I present a forecasting from 2006 to 2010 through comparing and integrating 3 models. In conclusion, marine production is expected to show a decreasing tendency for the coming years.

  • PDF

Multifractal Stochastic Processes and Stock Prices (다중프랙탈 확률과정과 주가형성)

  • Rhee, Il-King
    • The Korean Journal of Financial Management
    • /
    • v.20 no.2
    • /
    • pp.95-126
    • /
    • 2003
  • This paper introduces multifractal processes and presents the empirical investigation of the multifractal asset pricing. The multifractal stock price process contains long-tails which focus on Levy-Stable distributions. The process also contains long-dependence, which is the characteristic feature of fractional Brownian motion. Multifractality introduces a new source of heterogeneity through time-varying local reqularity in the price path. This paper investigates multifractality in stock prices. After finding evidence of multifractal scaling, the multifractal spectrum is estimated via the Legendre transform. The distinguishing feature of the multifractal process is multiscaling of the return distribution's moments under time-resealing. More intensive study is required of estimation techniques and inference procedures.

  • PDF

A Study on Prediction of Attendance in Korean Baseball League Using Artificial Neural Network (인경신경망을 이용한 한국프로야구 관중 수요 예측에 관한 연구)

  • Park, Jinuk;Park, Sanghyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.12
    • /
    • pp.565-572
    • /
    • 2017
  • Traditional method for time series analysis, autoregressive integrated moving average (ARIMA) allows to mine significant patterns from the past observations using autocorrelation and to forecast future sequences. However, Korean baseball games do not have regular intervals to analyze relationship among the past attendance observations. To address this issue, we propose artificial neural network (ANN) based attendance prediction model using various measures including performance, team characteristics and social influences. We optimized ANNs using grid search to construct optimal model for regression problem. The evaluation shows that the optimal and ensemble model outperform the baseline model, linear regression model.

Applying regional regression analysis of the hydrologic model parameters for assessing climate change impacts in the ungaged watershed (미계측 유역의 기후변화 영향평가를 위한 수문모형 매개변수의 지역회귀분석 적용)

  • Kim, Youngil;Seo, Seung Beom;Kim, Sung Jin;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.219-219
    • /
    • 2017
  • 상대적으로 유역의 관측 자료가 충분하지 못하거나 검증되지 않았을 경우 미계측 유역으로 정의되며 수문모형의 매개변수 검정을 할 수 없으므로 다른 방법을 고안해야 한다. 이를 위해 기존 연구에서는 지역적 특성을 고려한 지역회기분석을 통해 미계측 유역의 유량을 산정하였는데, 대부분 유역의 특성과 연 평균 유출량 자료의 관계를 이용한 회귀식으로 실시간 유량의 변화를 고려하기 어려웠다. 본 연구에서는 개념적 강우-유출모형으로 많이 사용되고 있는 개념적 수문모형인 GR4J의 매개변수에 대해 미계측 유역의 특성을 고려한 변수들을 이용하여 회귀식을 구하고 그 적용성을 평가하였다. 이를 통해 미계측 유역의 유량 시계열 자료를 생성할 수 있었다. 또한 IPCC에서 발간한 AR5의 RCP 4.5 시나리오를 적용하여 미래 유출량을 산정하였다. 우선 지역회귀분석을 적용하기 위해 수문모형을 이용한 계측 유역의 유출량을 구하였으며 22개의 전국 댐 상류 지점을 기준으로 SCE 알고리즘을 이용하여 GR4J의 최적 매개변수를 구하고 각 유역별로 물리적, 지형적, 기상학적 특성을 고려하여 11개의 변수를 선택하였다. 각 변수간 다중공선성(Multicollinearity)를 고려하기 위해 VIF(Variation Inflation Factor) test를 적용하여 최종 7개의 변수를 선정하고 단계별 회귀방법(Stepwise regression)을 이용하여 GR4J의 매개변수별 회귀식을 생성하였다.

  • PDF

Adaptive Short-Term Vehicle Speed Prediction Models (적응성 있는 단기간 속도 예측모형 개발에 관한 연구)

  • 조범철
    • Proceedings of the KOR-KST Conference
    • /
    • 1998.10a
    • /
    • pp.265-274
    • /
    • 1998
  • 본 논문은 도로를 주행하는 차량의 지점속도에 대하여 단기간(short-term)으로 예측하는 네 가지의 모형들에 대한 개발 및 결과의 비교하고 평가했다. 사용된 기법들로는 다중회귀분석, 시계열분석(ARIMA), 인공 신경망, 칼만필터링 등이며, 모형의 구출을 위하여 다수의 독립변수 및 입력변수가 요구되는 다중회귀분석과 인공 신경망에서는 연속방정식에서 고려되는 변수들간의 단순상관계수 및 편상관계수의 계산을 통해서 입력변수가 설정이 되었으며, 시계열분석(ARIMA)과 칼만필터링 등 단일 입력 변수만을 요하는 모형에서는 바로 전 시간대와 현재시간대의간격동안 속도의 변화량을 입력변수로 설정하였다. 속도를 비롯해서 교통 데이터는 현장자료를 사용하였는데, 이는 서울의 한강 옆에 위치한 올림픽대로 중 한강대로에 위치한 검지기 3개를 통해서 천호동 방면으로 이동하는 교통류에 대해서 17시간 (00시~17시)동안 수집했다. 17시간 수집했는데 그중에 검지된 속도는 14km/h에서 98km/h까지 변하는 등, 수집된 자료에는 다양한 교통상태가 포함되어 있는데 이는 각 모형들의 정확한 예측력과 적응성을 평가하기 위함이었다. 각 모형은 예측하고자 하는 시점으로부터 1, 5, 10, 15분 후의 속도를 예측하는 것으로 총 4가지의 예측시간간격으로 각각 실험되었다. 결과는 전반적으로 신뢰성 있게 나왔으나 그중에서도 정확성면에서는 인공신경망과 칼만필터링이 우수했고 적응성면에서는 칼만필터리딩 탁월했다. 또한 1분 후의 속도를 예측하는 결과들은 모형들간에 거의 비슷한 정확도를 보여주었는데 이는 입력변수의 설정이 중요한 것임을 보여주는 것이라 판단된다. 있는 기법이다.적으로 세부적 차종분류로 접근한다.의 영향들을 고려함으로써 가로망 설계 과정에서 가로망의 상반된 역할인 이동성과 접근성의 비교가 가능한 보다 현실적인 가로망 설계 모형을 구축하고자 한다. 지금까지 소개된 가로망 설계모형들은 용량변화에 대한 설계변수의 형태에 따라 이산적 가로망 설계 모형과 연속적 가로망 설계모형으로 나뉘어지게 된다. 본 논문의 경우, 계산속도의 향상 측면에서는 연속적 가로망 설계 모형을 도입할 수 있지만, 이때 요구되는 도로용량이 이산적인 변수(차선 수)로 결정되어야만 신호제어 변수를 결정할 수 있기 때문에, 이산적 가로망 설계 모형이 사용된다. 하지만, 이산적 설계모형의 경우 조합최적화 문제이므로 정확한 최적해를 구하기 위해서는 상당한 시간이 소요되며, 경우에 따라서는 국부 최적해에 빠지게 된다. 이러한 문제를 극복하기 위해, 우선 이상적 모형의 근사화, 혹은 조합최적화문제를 위해 개발된 Simulated Annealing기법의 적용, 연속적 모형의 변수를 이산화하는 방법 등 다양한 모형들을 고려해 본 뒤, 적절한 모형을 적용할 것이다. 가로망 설계 모형에서 신호제어를 고려하기 위해서는 주어진 가로망에 대한 통행 배정과정에서 고려되는 통행시간을 링크통행시간과 교차로 지체시간을 동시에 고려해야 하는데, 이러한 문제의 해결을 위해서 최근 활발히 논의되고 있는 교차로에서의 신호제어에 대응하는 통행배정 모형을 도입하여 고려하고자 한다. 이를 위해서 지금까지 연구되어온 Global Solution Approach와 Iterative Approach를 비교, 검토한 뒤 모형에 보다 알맞은 방법을 선택한다. 차량의

  • PDF