• 제목/요약/키워드: 다중 교차검증

검색결과 64건 처리시간 0.025초

A Study to Predict the Traffic Accident Severity Level Applying Neural Network at the Signalized Intersections (인공신경망을 적용한 신호교차로 교통사고심각도 예측에 관한 연구)

  • Choi, Jae-Won;Kim, Seong-Ho;Cho, Jun-Han;Kim, Won-Chul
    • Journal of Korean Society of Transportation
    • /
    • 제22권3호
    • /
    • pp.127-135
    • /
    • 2004
  • 교차로 안전성 진단과 관련된 기존의 연구는 교차로 상에서 발생한 사고 자료에 기초하여 교차로 기하구조 요소, 교통량 및 신호운영방법 등과 관련된 요인을 변수로 사용하여 교통사고건수 예측모형 개발에 관한 연구가 대부분이다. 그러나, 분석하고자 하는 대상 교차로의 사고건수 예측모형을 개발하기 위해 필요한 교통사고 자료의 경우 단 기일에 걸쳐 획득되지 않으며 몇 년간의 사고 자료를 요구할 수도 있다. 이러한 자료를 이용하더라도 사고 발생 기간동안 교차로 사고에 영향을 미치는 요인(교차로 운영방법, 기하구조 등)이 변화될 수도 있다는 문제점을 지닌다. 이와 같은 이유로 교차로 안전성을 진단하는데 있어 기존 교통사고 자료는 언제나 절대적인 자료가 될 수 없다. 이에 대한 보완책으로, 3일에서 5일정도의 조사 자료만으로도 안전성 진단이 가능한 상충자료를 이용하여 교차로 안전성 진단을 할 수 있다. 본 연구는 기존사고 자료를 이용하여 사고 발생에 기인하는 여러 변수들을 교통사고심각도와의 상관관계를 분석하고, 상관관계가 높은 변수를 이용하여 신경망 사고심각도 예측모형을 개발하였으며, 모형 검증을 위해 다중회귀사고심각도 예측모형을 개발하여 비교 평가한 결과 신경망 사고심각도 예측모형의 예측력이 우수한 것으로 나타났다. 현장에서 조사된 상충자료를 신경망 사고심각도 예측모형에 적용하여 상충이 사고로 연결 될 경우 사고심각도를 예측하였으며, 예측된 사고심각도에 가중치를 부여하여 대상 교차로 위험우선순위를 결정한 결과 사고비용에 기초한 위험우선순위 결정법과 같은 순위의 결과를 도출하였다.

Cross-Validation of SPT-N Values in Pohang Ground Using Geostatistics and Surface Wave Multi-Channel Analysis (지구통계기법과 표면파 다중채널분석을 이용한 포항 지반의 SPT-N value 교차검증)

  • Kim, Kyung-Oh;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제21권10호
    • /
    • pp.393-405
    • /
    • 2020
  • Various geotechnical information is required to evaluate the stability of the ground and a foundation once liquefaction occurs due to earthquakes, such as the soil strength and groundwater level. The results of the Standard Penetration Test (SPT) conducted in Korea are registered in the National Geotechnical Information Portal System. If geotechnical information for a non-drilled area is needed, geostatistics can be applied. This paper is about the feasibility of obtaining ground information by the Empirical Bayesian Kriging (EBK) method and the Inverse Distance Weighting Method (IDWM). Esri's ArcGIS Pro program was used to estimate these techniques. The soil strength parameter of the drilling area and the level of groundwater obtained from the standard penetration test were cross-validated with the results of the analysis technique. In addition, Multichannel Analysis of Surface Waves (MASW) was conducted to verify the techniques used in the analysis. The Buk-gu area of Pohang was divided into 1.0 km×1.0 km and 110 zones. The cross-validation for the SPT N value and groundwater level through EBK and IDWM showed that both techniques were suitable. MASW presented an approximate section area, making it difficult to clearly grasp the distribution pattern and groundwater level of the SPT N value.

Cross-covariance 3D Coordinate Estimation Method for Virtual Space Movement Platform (가상공간 이동플랫폼을 위한 교차 공분산 3D 좌표 추정 방법)

  • Jung, HaHyoung;Park, Jinha;Kim, Min Kyoung;Chang, Min Hyuk
    • Journal of Korea Society of Industrial Information Systems
    • /
    • 제25권5호
    • /
    • pp.41-48
    • /
    • 2020
  • Recently, as the demand for the mobile platform market in the virtual/augmented/mixed reality field is increasing, experiential content that gives users a real-world felt through a virtual environment is drawing attention. In this paper, as a method of tracking a tracker for user location estimation in a virtual space movement platform for motion capture of trainees, we present a method of estimating 3D coordinates of the 3D cross covariance through the coordinates of the markers projected on the image. In addition, the validity of the proposed algorithm is verified through rigid body tracking experiments.

Model based Facial Expression Recognition using New Feature Space (새로운 얼굴 특징공간을 이용한 모델 기반 얼굴 표정 인식)

  • Kim, Jin-Ok
    • The KIPS Transactions:PartB
    • /
    • 제17B권4호
    • /
    • pp.309-316
    • /
    • 2010
  • This paper introduces a new model based method for facial expression recognition that uses facial grid angles as feature space. In order to be able to recognize the six main facial expression, proposed method uses a grid approach and therefore it establishes a new feature space based on the angles that each gird's edge and vertex form. The way taken in the paper is robust against several affine transformations such as translation, rotation, and scaling which in other approaches are considered very harmful in the overall accuracy of a facial expression recognition algorithm. Also, this paper demonstrates the process that the feature space is created using angles and how a selection process of feature subset within this space is applied with Wrapper approach. Selected features are classified by SVM, 3-NN classifier and classification results are validated with two-tier cross validation. Proposed method shows 94% classification result and feature selection algorithm improves results by up to 10% over the full set of feature.

Estimation of seasonal rainfall based on multiple regression analysis using ASOS data of Korea Meteorological Administration (기상청 ASOS 자료를 활용한 다중회귀분석 기반의 계절 강수량 예측)

  • Kim, Chul-gyum;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Nam-won;Kim, Hyeonjun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.310-310
    • /
    • 2019
  • 본 연구에서는 기상청 ASOS(종관기상관측장비) 자료와 통계적 기반의 다중회귀분석모형을 이용하여 경안천 유역에 대한 봄철 강수량(3~5월 누적강수량)의 예측성을 평가하였다. 예측대상기간은 2006~2018년이며 예측인자로서 전국 96개 지점의 ASOS 자료 중 35개 기상요소에 대한 월 자료를 활용하였다. 전망기간(1~12개월)에 따라 강수량 기준 최소 1개월에서 최대 24개월까지의 지체시간을 고려하여 1~24개월 선행 ASOS 기상자료와 강수량 사이의 상관성을 분석하였다. 예측대상년도를 기준으로 과거 40년간의 자료를 이용하여 상관성 분석을 수행하였으며, 상관성이 높은 상위 30개 기상인자를 조합하여 다중회귀분석모형의 예측인자(독립변수)로 활용하였다. 예측대상년도와 전망기간에 따라 최적의 예측인자를 조합하고, 교차검증을 통하여 각각 4,000개의 다중회귀모형을 도출하여 예측범위를 산출하였다. 다중회귀모형에 의한 예측범위를 분석한 결과, 2013년 자료까지는 예측범위가 관측값을 잘 포함하고 예측값의 평균이나 중간값이 관측값과 유사하게 나타난 반면, 2014년부터는 전망기간에 따라 관측값과 예측범위의 차이가 크게 나타나는 경우도 있었다. 예측치의 중간값을 기준으로 3분위(평년 이상, 평년 수준, 평년 이하) 적중률을 분석하면, 2006~2013년에 대해서는 58.3%인 반면, 2014~2018년에 대해서는 11.2% 수준으로 나타났다.

  • PDF

Implementation on the evolutionary machine learning approaches for streamflow forecasting: case study in the Seybous River, Algeria (유출예측을 위한 진화적 기계학습 접근법의 구현: 알제리 세이보스 하천의 사례연구)

  • Zakhrouf, Mousaab;Bouchelkia, Hamid;Stamboul, Madani;Kim, Sungwon;Singh, Vijay P.
    • Journal of Korea Water Resources Association
    • /
    • 제53권6호
    • /
    • pp.395-408
    • /
    • 2020
  • This paper aims to develop and apply three different machine learning approaches (i.e., artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), and wavelet-based neural networks (WNN)) combined with an evolutionary optimization algorithm and the k-fold cross validation for multi-step (days) streamflow forecasting at the catchment located in Algeria, North Africa. The ANN and ANFIS models yielded similar performances, based on four different statistical indices (i.e., root mean squared error (RMSE), Nash-Sutcliffe efficiency (NSE), correlation coefficient (R), and peak flow criteria (PFC)) for training and testing phases. The values of RMSE and PFC for the WNN model (e.g., RMSE = 8.590 ㎥/sec, PFC = 0.252 for (t+1) day, testing phase) were lower than those of ANN (e.g., RMSE = 19.120 ㎥/sec, PFC = 0.446 for (t+1) day, testing phase) and ANFIS (e.g., RMSE = 18.520 ㎥/sec, PFC = 0.444 for (t+1) day, testing phase) models, while the values of NSE and R for WNN model were higher than those of ANNs and ANFIS models. Therefore, the new approach can be a robust tool for multi-step (days) streamflow forecasting in the Seybous River, Algeria.

2D-QSAR analysis for hERG ion channel inhibitors (hERG 이온채널 저해제에 대한 2D-QSAR 분석)

  • Jeon, Eul-Hye;Park, Ji-Hyeon;Jeong, Jin-Hee;Lee, Sung-Kwang
    • Analytical Science and Technology
    • /
    • 제24권6호
    • /
    • pp.533-543
    • /
    • 2011
  • The hERG (human ether-a-go-go related gene) ion channel is a main factor for cardiac repolarization, and the blockade of this channel could induce arrhythmia and sudden death. Therefore, potential hERG ion channel inhibitors are now a primary concern in the drug discovery process, and lots of efforts are focused on the minimizing the cardiotoxic side effect. In this study, $IC_{50}$ data of 202 organic compounds in HEK (human embryonic kidney) cell from literatures were used to develop predictive 2D-QSAR model. Multiple linear regression (MLR), Support Vector Machine (SVM), and artificial neural network (ANN) were utilized to predict inhibition concentration of hERG ion channel as machine learning methods. Population based-forward selection method with cross-validation procedure was combined with each learning method and used to select best subset descriptors for each learning algorithm. The best model was ANN model based on 14 descriptors ($R^2_{CV}$=0.617, RMSECV=0.762, MAECV=0.583) and the MLR model could describe the structural characteristics of inhibitors and interaction with hERG receptors. The validation of QSAR models was evaluated through the 5-fold cross-validation and Y-scrambling test.

Prediction of dairy cow mastitis with multi-sensor data using Multi-Layer Perceptron(MLP) (다중 센서 데이터와 다층 퍼셉트론을 활용한 젖소의 유방염 진단 예측)

  • Song, Hye-Won;Park, Gi-Cheol;Park, JaeHwa
    • Annual Conference of KIPS
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.788-791
    • /
    • 2020
  • 낙농업에서 경제적 손실을 불러일으키고 관찰 시간과 비용이 필요한 젖소의 유방염 관리는 중요하다. 그러나 지금까지의 연구는 유방염 진단에 초점을 맞추고 있고, 예측하려는 시도는 전무하다. 유방염에 걸린 개체는 며칠 동안 우유를 생산할 수 없기 때문에 낙농가에 막대한 피해를 준다. 따라서 젖소가 유방염에 걸려 증상이 나타나기 전에 미리 파악해 조처를 할 수 있도록 하는 것이 중요하다. 이에 본 연구는 유방염 예측을 위해 생체 데이터를 포함한 다중 센싱 데이터를 사용해 유방염 예측 모델을 개발하였다. 모델에 사용된 데이터는 충청남도의 농가에 설치된 로봇 착유기로 부터 수집하였으며, 일정 기간 동안의 다중 센싱 데이터를 바탕으로 다음 날의 유방염 여부를 예측한다. 많은 양의 비선형 데이터를 효과적으로 처리하기 위해 다층 퍼셉트론을 사용해 모델을 학습하였다. 그 결과, 81.6%의 예측 정확도를 보였으며 교차 검증을 통해 정확도뿐만 아니라 재현율까지 우수함을 확인할 수 있었다.

Development and Application of Traffic Accident Forecasting Model for Signalized Intersections (Four-Legged Signalized Intersections In Kwang-Ju) (신호교차로 교통사고 예측모형의 개발 및 적용 (광주광역시 4-지 신호교차로를 중심으로))

  • 하태준;강정규;박제진
    • Journal of Korean Society of Transportation
    • /
    • 제19권6호
    • /
    • pp.207-218
    • /
    • 2001
  • As a city and industries are developed rapidly, a traffic accident and congestion take places on the road link become serious and it can be a large problem of the society in the future. Especially, most of the traffic accidents on the signalized intersection are caused by the human factor, vehicle and environmental factor mutually. The relation of the traffic accident and volume is acting on the outbreak of the traffic accident and the mistake of driver altogether as a major cause. The purpose of this paper is to develop a model for the forecasting of the traffic accident and to use research data gained to predict many traffic accidents. The data of this study were used with real one of the 73 areas of the four-legged signalized intersection in Kwang-ju city from 1996 to 1998 for three years to develop a model for the forecasting of the traffic accident. The statistical methods used in this paper are the principal component, regression and correlation analysis. We studied accident models to find out useful data from the statistics method and applied the data to the different area of the Choun-La province for the verification of the model. So, the result of this paper showed a reasonable model for the forecasting or the traffic accident and possibility of the model for simulating on real case. Finally, This study would be made of a study continually for the safe design and plan for the four-legged signalized intersection.

  • PDF

Suggestion of Installation Criteria on Intersection Notification Divice (교차로 알림이 설치기준 제시에 관한 연구)

  • Jin, Tae-Hee;Kwon, Sung-Dae;Oh, Seok-Jin;Ha, Tae-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제39권1호
    • /
    • pp.73-80
    • /
    • 2019
  • Traffic Safety and efficient Road Traffic Policy of Traffic management came into effect over the certain size of the road like main road. Comparatively, Safety for Living street is deteriorated. Especially, Vehicle are usually priority to the life-zone street, even though Safety for the Passengers are essential to the life-zone street in the residential area. Improvement for the Living street has not been achieved In this study, To suggest Intersection Notifications standard of installation in Living Street, We execute on-site survey in priority to Gwangju Metropolitan City. Furthermore, After We suggest experimental value for the Intersection Notifications' standard of installation Prediction model in the Living street, Intersection Notifications compare & veritfy experimental value to the installation point's value to suggest the standard of installation in the living street. As a result, We can prevent frequent traffic accident in the Living Street. Furthermore, We are judged by installation of intersection Notifications considering stability and convenience to the passengers who are using the living street.