교차로 안전성 진단과 관련된 기존의 연구는 교차로 상에서 발생한 사고 자료에 기초하여 교차로 기하구조 요소, 교통량 및 신호운영방법 등과 관련된 요인을 변수로 사용하여 교통사고건수 예측모형 개발에 관한 연구가 대부분이다. 그러나, 분석하고자 하는 대상 교차로의 사고건수 예측모형을 개발하기 위해 필요한 교통사고 자료의 경우 단 기일에 걸쳐 획득되지 않으며 몇 년간의 사고 자료를 요구할 수도 있다. 이러한 자료를 이용하더라도 사고 발생 기간동안 교차로 사고에 영향을 미치는 요인(교차로 운영방법, 기하구조 등)이 변화될 수도 있다는 문제점을 지닌다. 이와 같은 이유로 교차로 안전성을 진단하는데 있어 기존 교통사고 자료는 언제나 절대적인 자료가 될 수 없다. 이에 대한 보완책으로, 3일에서 5일정도의 조사 자료만으로도 안전성 진단이 가능한 상충자료를 이용하여 교차로 안전성 진단을 할 수 있다. 본 연구는 기존사고 자료를 이용하여 사고 발생에 기인하는 여러 변수들을 교통사고심각도와의 상관관계를 분석하고, 상관관계가 높은 변수를 이용하여 신경망 사고심각도 예측모형을 개발하였으며, 모형 검증을 위해 다중회귀사고심각도 예측모형을 개발하여 비교 평가한 결과 신경망 사고심각도 예측모형의 예측력이 우수한 것으로 나타났다. 현장에서 조사된 상충자료를 신경망 사고심각도 예측모형에 적용하여 상충이 사고로 연결 될 경우 사고심각도를 예측하였으며, 예측된 사고심각도에 가중치를 부여하여 대상 교차로 위험우선순위를 결정한 결과 사고비용에 기초한 위험우선순위 결정법과 같은 순위의 결과를 도출하였다.
Journal of the Korea Academia-Industrial cooperation Society
/
제21권10호
/
pp.393-405
/
2020
Various geotechnical information is required to evaluate the stability of the ground and a foundation once liquefaction occurs due to earthquakes, such as the soil strength and groundwater level. The results of the Standard Penetration Test (SPT) conducted in Korea are registered in the National Geotechnical Information Portal System. If geotechnical information for a non-drilled area is needed, geostatistics can be applied. This paper is about the feasibility of obtaining ground information by the Empirical Bayesian Kriging (EBK) method and the Inverse Distance Weighting Method (IDWM). Esri's ArcGIS Pro program was used to estimate these techniques. The soil strength parameter of the drilling area and the level of groundwater obtained from the standard penetration test were cross-validated with the results of the analysis technique. In addition, Multichannel Analysis of Surface Waves (MASW) was conducted to verify the techniques used in the analysis. The Buk-gu area of Pohang was divided into 1.0 km×1.0 km and 110 zones. The cross-validation for the SPT N value and groundwater level through EBK and IDWM showed that both techniques were suitable. MASW presented an approximate section area, making it difficult to clearly grasp the distribution pattern and groundwater level of the SPT N value.
Jung, HaHyoung;Park, Jinha;Kim, Min Kyoung;Chang, Min Hyuk
Journal of Korea Society of Industrial Information Systems
/
제25권5호
/
pp.41-48
/
2020
Recently, as the demand for the mobile platform market in the virtual/augmented/mixed reality field is increasing, experiential content that gives users a real-world felt through a virtual environment is drawing attention. In this paper, as a method of tracking a tracker for user location estimation in a virtual space movement platform for motion capture of trainees, we present a method of estimating 3D coordinates of the 3D cross covariance through the coordinates of the markers projected on the image. In addition, the validity of the proposed algorithm is verified through rigid body tracking experiments.
This paper introduces a new model based method for facial expression recognition that uses facial grid angles as feature space. In order to be able to recognize the six main facial expression, proposed method uses a grid approach and therefore it establishes a new feature space based on the angles that each gird's edge and vertex form. The way taken in the paper is robust against several affine transformations such as translation, rotation, and scaling which in other approaches are considered very harmful in the overall accuracy of a facial expression recognition algorithm. Also, this paper demonstrates the process that the feature space is created using angles and how a selection process of feature subset within this space is applied with Wrapper approach. Selected features are classified by SVM, 3-NN classifier and classification results are validated with two-tier cross validation. Proposed method shows 94% classification result and feature selection algorithm improves results by up to 10% over the full set of feature.
Kim, Chul-gyum;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Nam-won;Kim, Hyeonjun
Proceedings of the Korea Water Resources Association Conference
/
한국수자원학회 2019년도 학술발표회
/
pp.310-310
/
2019
본 연구에서는 기상청 ASOS(종관기상관측장비) 자료와 통계적 기반의 다중회귀분석모형을 이용하여 경안천 유역에 대한 봄철 강수량(3~5월 누적강수량)의 예측성을 평가하였다. 예측대상기간은 2006~2018년이며 예측인자로서 전국 96개 지점의 ASOS 자료 중 35개 기상요소에 대한 월 자료를 활용하였다. 전망기간(1~12개월)에 따라 강수량 기준 최소 1개월에서 최대 24개월까지의 지체시간을 고려하여 1~24개월 선행 ASOS 기상자료와 강수량 사이의 상관성을 분석하였다. 예측대상년도를 기준으로 과거 40년간의 자료를 이용하여 상관성 분석을 수행하였으며, 상관성이 높은 상위 30개 기상인자를 조합하여 다중회귀분석모형의 예측인자(독립변수)로 활용하였다. 예측대상년도와 전망기간에 따라 최적의 예측인자를 조합하고, 교차검증을 통하여 각각 4,000개의 다중회귀모형을 도출하여 예측범위를 산출하였다. 다중회귀모형에 의한 예측범위를 분석한 결과, 2013년 자료까지는 예측범위가 관측값을 잘 포함하고 예측값의 평균이나 중간값이 관측값과 유사하게 나타난 반면, 2014년부터는 전망기간에 따라 관측값과 예측범위의 차이가 크게 나타나는 경우도 있었다. 예측치의 중간값을 기준으로 3분위(평년 이상, 평년 수준, 평년 이하) 적중률을 분석하면, 2006~2013년에 대해서는 58.3%인 반면, 2014~2018년에 대해서는 11.2% 수준으로 나타났다.
Zakhrouf, Mousaab;Bouchelkia, Hamid;Stamboul, Madani;Kim, Sungwon;Singh, Vijay P.
Journal of Korea Water Resources Association
/
제53권6호
/
pp.395-408
/
2020
This paper aims to develop and apply three different machine learning approaches (i.e., artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), and wavelet-based neural networks (WNN)) combined with an evolutionary optimization algorithm and the k-fold cross validation for multi-step (days) streamflow forecasting at the catchment located in Algeria, North Africa. The ANN and ANFIS models yielded similar performances, based on four different statistical indices (i.e., root mean squared error (RMSE), Nash-Sutcliffe efficiency (NSE), correlation coefficient (R), and peak flow criteria (PFC)) for training and testing phases. The values of RMSE and PFC for the WNN model (e.g., RMSE = 8.590 ㎥/sec, PFC = 0.252 for (t+1) day, testing phase) were lower than those of ANN (e.g., RMSE = 19.120 ㎥/sec, PFC = 0.446 for (t+1) day, testing phase) and ANFIS (e.g., RMSE = 18.520 ㎥/sec, PFC = 0.444 for (t+1) day, testing phase) models, while the values of NSE and R for WNN model were higher than those of ANNs and ANFIS models. Therefore, the new approach can be a robust tool for multi-step (days) streamflow forecasting in the Seybous River, Algeria.
The hERG (human ether-a-go-go related gene) ion channel is a main factor for cardiac repolarization, and the blockade of this channel could induce arrhythmia and sudden death. Therefore, potential hERG ion channel inhibitors are now a primary concern in the drug discovery process, and lots of efforts are focused on the minimizing the cardiotoxic side effect. In this study, $IC_{50}$ data of 202 organic compounds in HEK (human embryonic kidney) cell from literatures were used to develop predictive 2D-QSAR model. Multiple linear regression (MLR), Support Vector Machine (SVM), and artificial neural network (ANN) were utilized to predict inhibition concentration of hERG ion channel as machine learning methods. Population based-forward selection method with cross-validation procedure was combined with each learning method and used to select best subset descriptors for each learning algorithm. The best model was ANN model based on 14 descriptors ($R^2_{CV}$=0.617, RMSECV=0.762, MAECV=0.583) and the MLR model could describe the structural characteristics of inhibitors and interaction with hERG receptors. The validation of QSAR models was evaluated through the 5-fold cross-validation and Y-scrambling test.
낙농업에서 경제적 손실을 불러일으키고 관찰 시간과 비용이 필요한 젖소의 유방염 관리는 중요하다. 그러나 지금까지의 연구는 유방염 진단에 초점을 맞추고 있고, 예측하려는 시도는 전무하다. 유방염에 걸린 개체는 며칠 동안 우유를 생산할 수 없기 때문에 낙농가에 막대한 피해를 준다. 따라서 젖소가 유방염에 걸려 증상이 나타나기 전에 미리 파악해 조처를 할 수 있도록 하는 것이 중요하다. 이에 본 연구는 유방염 예측을 위해 생체 데이터를 포함한 다중 센싱 데이터를 사용해 유방염 예측 모델을 개발하였다. 모델에 사용된 데이터는 충청남도의 농가에 설치된 로봇 착유기로 부터 수집하였으며, 일정 기간 동안의 다중 센싱 데이터를 바탕으로 다음 날의 유방염 여부를 예측한다. 많은 양의 비선형 데이터를 효과적으로 처리하기 위해 다층 퍼셉트론을 사용해 모델을 학습하였다. 그 결과, 81.6%의 예측 정확도를 보였으며 교차 검증을 통해 정확도뿐만 아니라 재현율까지 우수함을 확인할 수 있었다.
As a city and industries are developed rapidly, a traffic accident and congestion take places on the road link become serious and it can be a large problem of the society in the future. Especially, most of the traffic accidents on the signalized intersection are caused by the human factor, vehicle and environmental factor mutually. The relation of the traffic accident and volume is acting on the outbreak of the traffic accident and the mistake of driver altogether as a major cause. The purpose of this paper is to develop a model for the forecasting of the traffic accident and to use research data gained to predict many traffic accidents. The data of this study were used with real one of the 73 areas of the four-legged signalized intersection in Kwang-ju city from 1996 to 1998 for three years to develop a model for the forecasting of the traffic accident. The statistical methods used in this paper are the principal component, regression and correlation analysis. We studied accident models to find out useful data from the statistics method and applied the data to the different area of the Choun-La province for the verification of the model. So, the result of this paper showed a reasonable model for the forecasting or the traffic accident and possibility of the model for simulating on real case. Finally, This study would be made of a study continually for the safe design and plan for the four-legged signalized intersection.
KSCE Journal of Civil and Environmental Engineering Research
/
제39권1호
/
pp.73-80
/
2019
Traffic Safety and efficient Road Traffic Policy of Traffic management came into effect over the certain size of the road like main road. Comparatively, Safety for Living street is deteriorated. Especially, Vehicle are usually priority to the life-zone street, even though Safety for the Passengers are essential to the life-zone street in the residential area. Improvement for the Living street has not been achieved In this study, To suggest Intersection Notifications standard of installation in Living Street, We execute on-site survey in priority to Gwangju Metropolitan City. Furthermore, After We suggest experimental value for the Intersection Notifications' standard of installation Prediction model in the Living street, Intersection Notifications compare & veritfy experimental value to the installation point's value to suggest the standard of installation in the living street. As a result, We can prevent frequent traffic accident in the Living Street. Furthermore, We are judged by installation of intersection Notifications considering stability and convenience to the passengers who are using the living street.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.