• Title/Summary/Keyword: 다중회귀분석식

Search Result 517, Processing Time 0.036 seconds

Mixed dentition analysis using a multivariate approach (다변량 기법을 이용한 혼합치열기 분석법)

  • Seo, Seung-Hyun;An, Hong-Seok;Lee, Shin-Jae;Lim, Won Hee;Kim, Bong-Rae
    • The korean journal of orthodontics
    • /
    • v.39 no.2
    • /
    • pp.112-119
    • /
    • 2009
  • Objective: To develop a mixed dentition analysis method in consideration of the normal variation of tooth sizes. Methods: According to the tooth-size of the maxillary central incisor, maxillary 1st molar, mandibular central incisor, mandibular lateral incisor, and mandibular 1st molar, 307 normal occlusion subjects were clustered into the smaller and larger tooth-size groups. Multiple regression analyses were then performed to predict the sizes of the canine and premolars for the 2 groups and both genders separately. For a cross validation dataset, 504 malocclusion patients were assigned into the 2 groups. Then multiple regression equations were applied. Results: Our results show that the maximum errors of the predicted space for the canine, 1st and 2nd premolars were 0.71 and 0.82 mm residual standard deviation for the normal occlusion and malocclusion groups, respectively. For malocclusion patients, the prediction errors did not imply a statistically significant difference depending on the types of malocclusion nor the types of tooth-size groups. The frequency of prediction error more than 1 mm and 2 mm were 17.3% and 1.8%, respectively. The overall prediction accuracy was dramatically improved in this study compared to that of previous studies. Conclusions: The computer aided calculation method used in this study appeared to be more efficient.

Prediction of Ultimate Bearing Capacity of Soft Soils Reinforced by Gravel Compaction Pile Using Multiple Regression Analysis and Artificial Neural Network (다중회귀분석 및 인공신경망을 이용한 자갈다짐말뚝 개량지반의 극한 지지력 예측)

  • Bong, Tae-Ho;Kim, Byoung-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.6
    • /
    • pp.27-36
    • /
    • 2017
  • Gravel compaction pile method has been widely used to improve the soft ground on the land or sea as one of the soft ground improvement technique. The ultimate bearing capacity of the ground reinforced by gravel compaction piles is affected by the soil strength, the replacement ratio of pile, construction conditions, and so on, and various prediction equations have been proposed to predict this. However, the prediction of the ultimate bearing capacity using the existing models has a very large error and variation, and it is not suitable for practical design. In this study, multiple regression analysis was performed using field loading test results to predict the ultimate bearing capacity of ground reinforced by gravel compaction pile, and the most efficient input variables are selected through evaluation of error by leave one out cross validation, and a multiple regression equation for the prediction of ultimate bearing capacity was proposed. In addition, the prediction error was evaluated by applying artificial neural network using the selected input variables, and the results were compared with those of the existing model.

Analysis of Impact Factors for the Improvement of Conceptual Cost Estimation Accuracy for Public Office Building (공공청사 개산견적 정확도 향상을 위한 공사비 영향요인 분석)

  • Jo, Yeong-Ho;Yun, Seok-Heon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.5
    • /
    • pp.495-506
    • /
    • 2021
  • A Conceptual cost estimate, which is computed in the preliminary step of a project, is important for decision-making by a contractor in terms of the project budget, economic feasibility and validity analysis, and alternative comparisons. Therefore, a high error rate of a prediction model for a conceptual cost estimate can lead to various problems including excessive project expenditures and a delayed break-even point. this study proposed optimal impact factors by configuring quantitative impact factors computable in a preliminary step in various cases(combinations of impact factors). subsequently, the accuracy of different cases was comparatively analyzed by using the cases as input values of a prediction model using regression analysis. when the optimal combination of impact factors proposed in this study and other combination of impact factors were applied to the prediction model, the regression analysis-based prediction model exhibited 0.2-4.7% improvements in accuracy, respectively. the optimal combination of impact factors proposed in this study improved the accuracy of the prediction model of a conceptual cost estimate by removing unnecessary impact factor.

A Characteristic Analysis of Critical Duration of Design Rainfall in Medium Sized Catchment (중규모 하천유역에서 임계지속기간 특성 분석)

  • Lee, Jung-Sik;Park, Jong-Young;Kim, Seok-Dong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.135-144
    • /
    • 2009
  • The objective of this study is to examine the effect of hydrological factors on critical durations, and to analyze the relationship between the watershed characteristics and the critical duration of design rainfall in the medium sized catchments. Hydrological factors are used to return period, probable intensity formula, hydrograph method, effective rainfall and temporal pattern of design rainfall. Hydrologic analysis has done over the 44 medium sized catchments with $50{\sim}5,000{\beta}{\yen}$. Watershed characteristics such as catchment area, channel length, channel slope, catchment slope, time to peak, concentration of time and curve number were used to simulate correlation analysis. All of hydrological factors except return period influence to the critical duration of design rainfall. Also, it is revealed that critical duration is influenced by the watershed characteristics such as area, channel length, channel slope and catchment slope. Multiple regression analysis using watershed characteristics is carried out for the estimation of relationship among these. And the 7 type equations are proposed by the multiple regression using watershed characteristics and critical duration of design rainfall. The determination coefficient of multiple regression equations shows $0.96{\sim}0.97$.

관제구역 내 안전속력에 관한 연구

  • Park, Jin-Wan;Gang, Sang-Geun;Jeong, Jung-Sik;Park, Gye-Gak;Kim, Hyo-Jin;Kim, Seong-Uk;Park, Gyeong-Sun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.303-305
    • /
    • 2014
  • 관제구역 내 선박의 충돌을 예방할 수 있는 통항선박의 안전속력을 제시하기 위하여 선박의 충돌에 미치는 속력의 영향을 분석함으로써 속력과 충돌사고의 관련성을 통계적인 분석을 통하여 제시하였으며, 다중회귀분석법 및 정보기준의 최적화 기법을 적용하여 정량적인 측면에서 선박속력의 평균 및 분산이 잠재적 충돌사고에 미치는 영향을 검토하였다.

  • PDF

Stability Analysis of High Speed Railway Tunnel Passing Through the Abandoned Mine Area (폐광지역을 통과하는 고속철도터널의 안정성 평가)

  • 장명환;양형식;정소걸
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.395-402
    • /
    • 2000
  • The influence of the mined-out caves on the stability of the high speed railway tunnel was investigated with a series of geological logging and in-situ tests on the one hand, and with the rock mass classification using the multiple regression analysis on the other hand. The rock mass in this area can be classified as 'fair', and the condition of the discontinuities plays the most important role in the classification of the rock mass. The results of the analysis obtained by the FLAC showed that the western part of the tunnel locating at 50m above the mine cavities could be affected by subsidence associated with a considerable deformation, the magnitude of which might depend on the properties of the rock mass.

  • PDF

Estimated Headwater Stream Temperature Using Environmental Factors with Seasonal Variations in a Forested Catchment (환경인자를 이용한 산지계류의 계절별 수온변화 예측)

  • Nam, Sooyoun;Jang, Su-Jin;Kim, Suk-Woo;Lee, Youn-Tae;Chun, Kun-Woo
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.1
    • /
    • pp.55-62
    • /
    • 2020
  • To estimate headwater stream temperature with seasonal variations, we analyzed precipitation, runoff and air temperature in experimental forest of Kangwon National University, Gangwon-do (2017~2018 years). The daily mean value of headwater stream temperature for spring was 6.9~17.7℃ and correlated with air temperature, that for summer and fall were 12.2~26.3℃ and 3.6~19.3℃, correlated with air temperature and runoff. Based on seasonal variations, we applied for stepwise multiple linear regression analyses to estimate headwater stream temperature with seasonal variations. The equations were headwater stream temperature(WT)spring=(0.553×Air temperature)+(0.086×Runoff)+4.145 (R2=0.505; p<0.01), WTsummer=(0.756×Air temperature)+(-0.072×Runoff)+2.670 (R2=0.510; p<0.01), and WTfall=(0.738×Air temperature)+(0.028×Precipitation)+2.660 (R2=0.844; p<0.01). The coefficient of determination (R2) was greater than when it was estimated by air temperature in all seasons and progressively increased from spring to winter. Therefore, we indicated difference on estimated magnitude of stepwise multiple linear regression, due to effects on headwater stream temperature of different environmental factors with seasonal variations. Furthermore, temporal factors with spatial characteristics (e.g., river versus headwater stream) could be recommended for estimating headwater stream temperature.

Derivation of Sediment Concentration for the Computation of Total Sediment Discharge (總流砂量의 算定을 위한 流砂濃度式의 導出)

  • Lee, Jong-Seok;Kim, Jin-Gyu;Cha, Yeong-Gi
    • Water for future
    • /
    • v.29 no.1
    • /
    • pp.181-190
    • /
    • 1996
  • Quantitative computation of sediment discharge in alluvial channels is conducted by the determined method based on the incipient motion or the sediment transport concept. The derived formulation of sediment concentration in this study was developed in order to compute the total sediment discharge by a regression analysis method, one of the determined methods by the sediment transport concept. The used data set in derived formulation consists of the total 360 data including 135 and 225 measured data in natural channels and experimental channels, respectively. Also, the formulation by the multiple regression analysis was composed of independent bariables of flow depth, mean velocity, channel slope, Froude number and median diameter in bed materials.

  • PDF

A Study on Wheel Load Distribution Factors of Skew Steel Box Girder Bridges (강상자형 사교의 윤하중분배계수)

  • Seo, Chang-Bum;Song, Jae-Ho;Kim, Il-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.4 s.56
    • /
    • pp.148-158
    • /
    • 2009
  • Firstly the problems of existing foreign code concerning wheel load distribution factor for skew box girder bridges have been examined, and the main parameters which have effects on wheel load distribution factors are evaluated in this study. Further finite element analyses on various skew steel box girder bridges are carried out. Based on the analysis results, formulas to determine wheel load distribution factors are proposed using multiple regression analysis. It is found when using the proposed formulas in this study weak points of existing specifications could be improved and also time spent at structural analysis should be saved a lot, so that the validity and practicality could be verified.

기상관측소 지중온도 및 국가지하수관측망 수온 자료 분석

  • Gu Min-Ho;Song Yun-Ho;Lee Jun-Hak
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.100-104
    • /
    • 2006
  • 58개 기상관측소에서 최근 22년간 측정된 천부 지중온도 자료와 국가지하수관측망의 169개 암반 및 95개 충적층 관측소에서 측정된 지하수 온도 자료를 이용하여 다음과 같은 연구를 수행하였다. 첫째, 우리나라 대기, 지면 및 지하수의 연평균 온도분포도를 제시하였으며, 다중회귀분석을 통하여 대기 및 지면온도를 추정할 수 있는 회귀식을 산정하였다. 둘째, 지면온도에 영향을 미치는 기상 요소로서 일사량, 지구복사, 강수량 및 적설량 자료를 분석하였다. 마지막으로 열전도 모델을 이용하여 심도별 열확산계수를 산정하고 통계 자료를 제시하였다.

  • PDF