• Title/Summary/Keyword: 다중투사영상

Search Result 12, Processing Time 0.021 seconds

Three Dimensional Target Volume Reconstruction from Multiple Projection Images (다중투사영상을 이용한 표적체적의 3차원 재구성)

  • 정광호;진호상;이형구;최보영;서태석
    • Progress in Medical Physics
    • /
    • v.14 no.3
    • /
    • pp.167-174
    • /
    • 2003
  • In the radiation treatment planning (RTP) process, especially for stereotactic radiosurgery (SRS), knowing the exact volume and shape and the precise position of a lesion is very important. Sometimes X-ray projection images, such as angiograms, become the best choice for lesion identification. However, while the exact target position can be acquired by bi-projection images, 3D target reconstruction from bi-projection images is considered to be impossible. The aim of this study was to reconstruct the 3D target volume from multiple projection images. It was assumed that we knew the exact target position in advance, and all processes were performed in Target Coordinates, where the origin was the center of the target. We used six projections: two projections were used to make a Reconstruction Box and four projections were for image acquisition. The Reconstruction Box was made up of voxels of 3D matrices. Projection images were transformed into 3D in this virtual box using a geometric back-projection method. The resolution and the accuracy of the reconstructed target volume were dependent on the target size. An algorithm was applied to an ellipsoid model and a horseshoe-shaped model. Projection images were created geometrically using C program language, and reconstruction was also performed using C program language and Matlab ver. 6(The Mathwork Inc., USA). For the ellipsoid model, the reconstructed volume was slightly overestimated, but the target shape and position proved to be correct. For the horseshoe-shaped model, reconstructed volume was somewhat different from the original target model, but there was a considerable improvement in determining the target volume.

  • PDF

Image-based Modeling by Minimizing Projection Error of Primitive Edges (정형체의 투사 선분의 오차 최소화에 의한 영상기반 모델링)

  • Park Jong-Seung
    • The KIPS Transactions:PartB
    • /
    • v.12B no.5 s.101
    • /
    • pp.567-576
    • /
    • 2005
  • This paper proposes an image-based modeling method which recovers 3D models using projected line segments in multiple images. Using the method, a user obtains accurate 3D model data via several steps of simple manual works. The embedded nonlinear minimization technique in the model parameter estimation stage is based on the distances between the user provided image line segments and the projected line segments of primitives. We define an error using a finite line segment and thus increase accuracy in the model parameter estimation. The error is defined as the sum of differences between the observed image line segments provided by the user and the predicted image line segments which are computed using the current model parameters and camera parameters. The method is robust in a sense that it recovers 3D structures even from partially occluded objects and it does not be seriously affected by small measurement errors in the reconstruction process. This paper also describesexperimental results from real images and difficulties and tricks that are found while implementing the image-based modeler.

Multi-tracer Imaging of a Compton Camera (다중 추적자 영상을 위한 컴프턴 카메라)

  • Kim, Soo Mee
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.18-27
    • /
    • 2015
  • Since a Compton camera has high detection sensitivity due to electronic collimation and a good energy resolution, it is a potential imaging system for nuclear medicine. In this study, we investigated the feasibility of a Compton camera for multi-tracer imaging and proposed a rotating Compton camera to satisfy Orlov's condition for 3D imaging. Two software phantoms of 140 and 511 keV radiation sources were used for Monte-Carlo simulation and then the simulation data were reconstructed by listmode ordered subset expectation maximization to evaluate the capability of multi-tracer imaging in a Compton camera. And the Compton camera rotating around the object was proposed and tested with different rotation angle steps for improving the limited coverage of the fixed conventional Compton camera over the field-of-view in terms of histogram of angles in spherical coordinates. The simulation data showed the separate 140 and 511 keV images from simultaneous multi-tracer detection in both 2D and 3D imaging and the number of valid projection lines on the conical surfaces was inversely proportional to the decrease of rotation angle. Considering computation load and proper number of projection lines on the conical surface, the rotation angle of 30 degree was sufficient for 3D imaging of the Compton camera in terms of 26 min of computation time and 5 million of detected event number and the increased detection time can be solved with multiple Compton camera system. The Compton camera proposed in this study can be effective system for multi-tracer imaging and is a potential system for development of various disease diagnosis and therapy approaches.

Three-dimensional Machine Vision System based on moire Interferometry for the Ball Shape Inspection of Micro BGA Packages (마이크로 BGA 패키지의 볼 형상 시각검사를 위한 모아레 간섭계 기반 3차원 머신 비젼 시스템)

  • Kim, Min-Young
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.81-87
    • /
    • 2012
  • This paper focuses on three-dimensional measurement system of micro balls on micro Ball-Grid-Array(BGA) packages in-line. Most of visual inspection system still suffers from sophisticate reflection characteristics of micro balls. For accurate shape measurement of them, a specially designed visual sensor system is proposed under the sensing principle of phase shifting moire interferometry. The system consists of a pattern projection system with four projection subsystems and an imaging system. In the projection system, four subsystems have spatially different projection directions to make target objects experience the pattern illuminations with different incident directions. For the phase shifting, each grating pattern of subsystem is regularly moved by PZT actuator. To remove specular noise and shadow area of BGA balls efficiently, a compact multiple-pattern projection and imaging system is implemented and tested. Especially, a sensor fusion algorithm to integrate four information sets, acquired from multiple projections, into one is proposed with the basis of Bayesian sensor fusion theory. To see how the proposed system works, a series of experiments is performed and the results are analyzed in detail.

Reconstruction of parametrized model using only three vanishing points from a single image (한 영상으로부터 3개의 소실 점들만을 사용한 매개 변수의 재구성)

  • 최종수;윤용인
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.3C
    • /
    • pp.419-425
    • /
    • 2004
  • This paper presents a new method which is calculated to use only three vanishing points in order to compute the dimensions of object and its pose from a single image of perspective projection taken by a camera. Our approach is to only compute three vanishing points without informations such as the focal length and rotation matrix from images in the case of perspective projection. We assume that the object can be modeled as a linear function of a dimension vector v. The input of reconstruction is a set of correspondences between features in the model and features in the image. To minimize each the dimensions of the parameterized models, this reconstruction of optimization can be solved by standard nonlinear optimization techniques with a multi-start method which generates multiple starting points for the optimizer by sampling the parameter space uniformly.

Sequential Stereoscopic Display System based on a Volume Holographic Memory (체적 홀로그래픽 메모리를 이용한 스테레오스코픽 동영상 디스플레이 시스템)

  • Lee, Seung-Hyeon;Seon, Gwang-Cheol;Kim, Eun-Su
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.2
    • /
    • pp.22-27
    • /
    • 2000
  • We present a sequential stereoscopic display system using volume holographic storage. Multiple angular multiplexed stereoscopic image pairs are recorded into a photorefractive crystal that can store data with high density, transfer them with high speed, and select a randomly chosen data element. The reference beam with Bragg selectivity is scattered by the index grating and the diffracted beams are propagating along the directions of the stereoscopic image pairs. The images are to be suitably projected on the left and right display plane sequentially for stereoscopic video viewing.

  • PDF

Design of Projection Mapping System based on Multiple Object Detection (다중 물체 인식 기술 기반 프로젝션 매핑 시스템의 설계)

  • Jo, In-jae;Jeon, Seong-hwan;Choi, Yoo-Joo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.723-725
    • /
    • 2016
  • 본 논문에서는 프로젝션 기반 증강현실의 초기 캘리브레이션 단계에서 수동화 작업 절차를 줄이기 위하여 위치가 변화하는 다중 물체의 위치를 자동으로 추출하여 가상이미지를 투사하기 위한 실시간 마스킹 기반 프로젝션 매핑 기법을 제안하다. 이를 위하여 카메라 영상으로부터 실재하는 여러 개의 3차원 물체의 영역을 인식하고, 프로젝션 되는 가상 이미지의 디스플레이 영역을 자동으로 계산하는 절차를 제시한다. 제안 방법을 적용한 프로젝션 매핑 프로토타입 시스템을 설계 구현하고, 동적 배경이 결합된 프로젝션 매핑 콘텐츠 제작 결과를 제시한다.

Compensation Methods for Non-uniform and Incomplete Data Sampling in High Resolution PET with Multiple Scintillation Crystal Layers (다중 섬광결정을 이용한 고해상도 PET의 불균일/불완전 데이터 보정기법 연구)

  • Lee, Jae-Sung;Kim, Soo-Mee;Lee, Kwon-Song;Sim, Kwang-Souk;Rhe, June-Tak;Park, Kwang-Suk;Lee, Dong-Soo;Hong, Seong-Jong
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.1
    • /
    • pp.52-60
    • /
    • 2008
  • Purpose: To establish the methods for sinogram formation and correction in order to appropriately apply the filtered backprojection (FBP) reconstruction algorithm to the data acquired using PET scanner with multiple scintillation crystal layers. Materials and Methods: Formation for raw PET data storage and conversion methods from listmode data to histogram and sinogram were optimized. To solve the various problems occurred while the raw histogram was converted into sinogram, optimal sampling strategy and sampling efficiency correction method were investigated. Gap compensation methods that is unique in this system were also investigated. All the sinogram data were reconstructed using 20 filtered backprojection algorithm and compared to estimate the improvements by the correction algorithms. Results: Optimal radial sampling interval and number of angular samples in terms of the sampling theorem and sampling efficiency correction algorithm were pitch/2 and 120, respectively. By applying the sampling efficiency correction and gap compensation, artifacts and background noise on the reconstructed image could be reduced. Conclusion: Conversion method from the histogram to sinogram was investigated for the FBP reconstruction of data acquired using multiple scintillation crystal layers. This method will be useful for the fast 20 reconstruction of multiple crystal layer PET data.

Projection Facade and Game System for Multi-Audience Participation using Smart Devices (스마트 기기를 활용한 다중 관람자 참여형 프로젝션 파사드 및 게임 시스템)

  • Jang, Seungeun;Tang, Jiamei;Kim, Sangwook
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.7
    • /
    • pp.1-8
    • /
    • 2013
  • As yet the use of 3D projection mapping facade has been limited to advertising and performance in the outside. And interactive elements are lacking. In this paper, propose a interaction system which control of projection mapping facade for multi-audience participation using smart devices. The system can be interaction for the multi-façade. And single or multiple can participate in the game. A user test based on the result confirmed an effectiveness of the proposed method. This research showed a practical method in which interaction of projection facade system can be used to user devices. The results of this study can be used as a base module for projection facade interaction system. In addition, It can be utilized for converged content development such as performances, games, education and various applications services.

The Characteristics and Optical Implementation of OA-pSDF BPOF (OA-pSDF BPOF의 특성 및 광학적 구현)

  • 임종태;박성균;엄주욱;박한규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.8
    • /
    • pp.1433-1445
    • /
    • 1994
  • In this paper, an coherent optical correlator system based on the off-axis projection synthetic discriminant funtion (OA-pSDF) was analyzed and implemented optically. The filter was synthesized by combining conventional pSDF with single reference plane wave multiplexing. Synthesized pSDF were transformed to binary phase only filters (BPOFs) and fabricated as computer generated holograms(CGHs), which was used in the real time optical correlator system instead of using expensive spatial light modulators(SLMs). From the characteristic test, it was found that OA-pSDF showed distortion invariance and good performances in discrminating subset images. The proposed OA-pSDF BPOF could overcome the limitations of conventional BPOFs : that is distortion variance such as acale and rotation, especially out of plane variance.

  • PDF