• Title/Summary/Keyword: 다중지능이론

Search Result 60, Processing Time 0.026 seconds

A Study on standardization and R&D directions of smart work technology (스마트워크 기술개발 및 표준화 추진 방향)

  • Min, J.H.;Huh, M.Y.;Park, J.Y.
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.786-789
    • /
    • 2015
  • Recent concept of smart wort which is advanced from that of existing smart work means the task performance method in which we can provide the highest value to our customers by accomplishing the customer-oriented business creatively, innovatively and quickly. New concept of smart work can come through adding multiple intelligence theory and open innovation to social media technologies which have the characteristics of high connectivity, collective intelligence, rapid feedback. In accordance with the evolution of smart work concept, it is necessary to make the plan and strategy on R&D and standardization through the analysis of key technologies in order to realize the advanced smart work and secure a leading position in smart work market. Accordingly, In this paper, we propose standardization tasks and technologies which our country can lead and present a long-term driving directions by analyzing the conceptual change of smart work, technology trends and standardization trends.

  • PDF

A Study on Spatial Modeling Framework for Marine GIS (에이전트 기반의 해양공간정보시스템 모델링 연구)

  • Park Jongmin
    • Journal of Navigation and Port Research
    • /
    • v.28 no.10 s.96
    • /
    • pp.917-923
    • /
    • 2004
  • With a rapid growing of information networks and development achievements in mobile technology the spatial information is one of the most important resources for modern daily life. But the speed of spatial information technology trends are far from the real service demands as compared to the other relevant fields, and it would be natural that this unbalanced gap between the supply and demand of spatial information technology is being resulted from the absence of appropriate modeling concepts at some extents. In this paper there would be shown a new approaching model for the spatial information system based on agent concepts, which is able to perform some spatial tasks if properly implemented afterward. And to give resonable background of the new modeling framework here also some known critics for the commonly used modeling approaches when they applied to spatial information modeling followed by several alternative requirements for a good spatial modeling framework. And also there would be some considerations for applying this approach to the marine geographic information communities.

Predicting stock movements based on financial news with systematic group identification (시스템적인 군집 확인과 뉴스를 이용한 주가 예측)

  • Seong, NohYoon;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.1-17
    • /
    • 2019
  • Because stock price forecasting is an important issue both academically and practically, research in stock price prediction has been actively conducted. The stock price forecasting research is classified into using structured data and using unstructured data. With structured data such as historical stock price and financial statements, past studies usually used technical analysis approach and fundamental analysis. In the big data era, the amount of information has rapidly increased, and the artificial intelligence methodology that can find meaning by quantifying string information, which is an unstructured data that takes up a large amount of information, has developed rapidly. With these developments, many attempts with unstructured data are being made to predict stock prices through online news by applying text mining to stock price forecasts. The stock price prediction methodology adopted in many papers is to forecast stock prices with the news of the target companies to be forecasted. However, according to previous research, not only news of a target company affects its stock price, but news of companies that are related to the company can also affect the stock price. However, finding a highly relevant company is not easy because of the market-wide impact and random signs. Thus, existing studies have found highly relevant companies based primarily on pre-determined international industry classification standards. However, according to recent research, global industry classification standard has different homogeneity within the sectors, and it leads to a limitation that forecasting stock prices by taking them all together without considering only relevant companies can adversely affect predictive performance. To overcome the limitation, we first used random matrix theory with text mining for stock prediction. Wherever the dimension of data is large, the classical limit theorems are no longer suitable, because the statistical efficiency will be reduced. Therefore, a simple correlation analysis in the financial market does not mean the true correlation. To solve the issue, we adopt random matrix theory, which is mainly used in econophysics, to remove market-wide effects and random signals and find a true correlation between companies. With the true correlation, we perform cluster analysis to find relevant companies. Also, based on the clustering analysis, we used multiple kernel learning algorithm, which is an ensemble of support vector machine to incorporate the effects of the target firm and its relevant firms simultaneously. Each kernel was assigned to predict stock prices with features of financial news of the target firm and its relevant firms. The results of this study are as follows. The results of this paper are as follows. (1) Following the existing research flow, we confirmed that it is an effective way to forecast stock prices using news from relevant companies. (2) When looking for a relevant company, looking for it in the wrong way can lower AI prediction performance. (3) The proposed approach with random matrix theory shows better performance than previous studies if cluster analysis is performed based on the true correlation by removing market-wide effects and random signals. The contribution of this study is as follows. First, this study shows that random matrix theory, which is used mainly in economic physics, can be combined with artificial intelligence to produce good methodologies. This suggests that it is important not only to develop AI algorithms but also to adopt physics theory. This extends the existing research that presented the methodology by integrating artificial intelligence with complex system theory through transfer entropy. Second, this study stressed that finding the right companies in the stock market is an important issue. This suggests that it is not only important to study artificial intelligence algorithms, but how to theoretically adjust the input values. Third, we confirmed that firms classified as Global Industrial Classification Standard (GICS) might have low relevance and suggested it is necessary to theoretically define the relevance rather than simply finding it in the GICS.

A Multimodal Profile Ensemble Approach to Development of Recommender Systems Using Big Data (빅데이터 기반 추천시스템 구현을 위한 다중 프로파일 앙상블 기법)

  • Kim, Minjeong;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.93-110
    • /
    • 2015
  • The recommender system is a system which recommends products to the customers who are likely to be interested in. Based on automated information filtering technology, various recommender systems have been developed. Collaborative filtering (CF), one of the most successful recommendation algorithms, has been applied in a number of different domains such as recommending Web pages, books, movies, music and products. But, it has been known that CF has a critical shortcoming. CF finds neighbors whose preferences are like those of the target customer and recommends products those customers have most liked. Thus, CF works properly only when there's a sufficient number of ratings on common product from customers. When there's a shortage of customer ratings, CF makes the formation of a neighborhood inaccurate, thereby resulting in poor recommendations. To improve the performance of CF based recommender systems, most of the related studies have been focused on the development of novel algorithms under the assumption of using a single profile, which is created from user's rating information for items, purchase transactions, or Web access logs. With the advent of big data, companies got to collect more data and to use a variety of information with big size. So, many companies recognize it very importantly to utilize big data because it makes companies to improve their competitiveness and to create new value. In particular, on the rise is the issue of utilizing personal big data in the recommender system. It is why personal big data facilitate more accurate identification of the preferences or behaviors of users. The proposed recommendation methodology is as follows: First, multimodal user profiles are created from personal big data in order to grasp the preferences and behavior of users from various viewpoints. We derive five user profiles based on the personal information such as rating, site preference, demographic, Internet usage, and topic in text. Next, the similarity between users is calculated based on the profiles and then neighbors of users are found from the results. One of three ensemble approaches is applied to calculate the similarity. Each ensemble approach uses the similarity of combined profile, the average similarity of each profile, and the weighted average similarity of each profile, respectively. Finally, the products that people among the neighborhood prefer most to are recommended to the target users. For the experiments, we used the demographic data and a very large volume of Web log transaction for 5,000 panel users of a company that is specialized to analyzing ranks of Web sites. R and SAS E-miner was used to implement the proposed recommender system and to conduct the topic analysis using the keyword search, respectively. To evaluate the recommendation performance, we used 60% of data for training and 40% of data for test. The 5-fold cross validation was also conducted to enhance the reliability of our experiments. A widely used combination metric called F1 metric that gives equal weight to both recall and precision was employed for our evaluation. As the results of evaluation, the proposed methodology achieved the significant improvement over the single profile based CF algorithm. In particular, the ensemble approach using weighted average similarity shows the highest performance. That is, the rate of improvement in F1 is 16.9 percent for the ensemble approach using weighted average similarity and 8.1 percent for the ensemble approach using average similarity of each profile. From these results, we conclude that the multimodal profile ensemble approach is a viable solution to the problems encountered when there's a shortage of customer ratings. This study has significance in suggesting what kind of information could we use to create profile in the environment of big data and how could we combine and utilize them effectively. However, our methodology should be further studied to consider for its real-world application. We need to compare the differences in recommendation accuracy by applying the proposed method to different recommendation algorithms and then to identify which combination of them would show the best performance.

Design of Educational Game for Development of Creativity (창의력 계발을 위한 학습게임의 설계)

  • Ahn, Seong-Hye;Song, Su-Mi
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.9
    • /
    • pp.1-9
    • /
    • 2007
  • Recently, the primary school training courses requires creative human being who is able to solve problem in accordance with rapidly changing society. Accordingly, it needs development of edutainment contents that can develop creativity and heighten educational effect as attracting learner's interest. This paper intends to design educational game which can develop creativity. Method of research is based on the concept of creativity and theory of multiple intelligence. First, I pulled out educational elements of edutainment game which can develop ability to solve synthetic problem and then drew interest elements of edutainment game by combined game with form of cartoon. Secondly, creativity studying area set the 5 learning area of verbal, visual, mathematical, logical and analytic creativity and then, a course of learning was designed to have each 3 details of 5 teaming areas of creativity. Finally, it presented production direction of educational game by combined with 4 elements of the interest that is an avatar, achievement of a mission, a time limit and win a point.

Decision Making Model using Multiple Matrix Analysis for Optimum Construction Method Selection (다중 매트릭스 분석 기법을 이용한 최적 건축공법 선정 의사결정지원 모델)

  • Lee, Jong-Sik;Lim, Myung-Kwan
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.4
    • /
    • pp.331-339
    • /
    • 2016
  • According to high-rise, complexation, and enlargement of buildings, various construction methods are being developed, and the significance of construction method selection about main work types has emerged as a major interest. However, it has been pointed out that hand-on workers cannot consider project characteristics carefully, and they lack an objective standard or reference for main construction method selection. Hence, the selection is being made depending on hand-on workers' experience and intuition. To solve this problem, various studies have proceeded for construction method selection of main work types using Artificial Intelligence like Fuzzy, AHP and Case-based reasoning. It is difficult to apply many different kinds of construction method selection to every main work type with consideration for characteristics of work types and condition of a construction site when selecting construction method in the field. Accordingly, this study proposed the decision-making model which can apply to fields easily. Using matrix analysis and liner transformation, this study verified consistency of study models applied in the process of soil retaining selection with a case study.

Cinematic Circulation of Meta-verse and Meta-physics (메타버스와 메타피직스의 영화적 순환)

  • Shim, Kwang-hyun
    • Trans-
    • /
    • v.12
    • /
    • pp.81-106
    • /
    • 2022
  • The possibility of metaverse system to be a catalyst for hyper-connected society will be dependent on the speed of connected technological development and its social utilization in the same manner as AI technology. Putting these technical realization processes in brackets, this paper focus on some philosophical-political issues in connection with cognitive-ecological changes in the future cinema which will be influenced by the complexive techno-socio couples of accelerated development of metaverse system. Generally speaking, essence of metaverse system seems to be the degree of immersion by technical accuracy, but is not true. In perspective of cognitive-ecology, flow degree of a picture or photograph is relied not on 'accuracy of representation' but on its message's contextual link-up. In this aspect, real potentiality of metaverse system shall be understood in the context of cognitive-ecological changes of human brain's multi-intelligence networking abilities(intersection of augmentation-simulation and outside-inside) which will be activated in the new structure of natural-social-technological coupling of metaverse system. These cognitive-ecological potentialities have been partially actualized in the cinematic process of tripod mimesis for the longest time, [real contradiction/conflicts (Mimesis-1) -->fictional solutions of cinema (Mimesis-2) --> selective interpretation of spectator's wish fulfillment (Mimesis-3) --> real change (Mimesis-1')]. Therefore metaverse's real potentiality must be considered to be dependent on the possibility of deepening and extending of cinematic circulation between real seperation/problems and ideal connection/solutions. In this context, advanced metaverse system can be compared as a modern technical version of ideal circulation of physics and metaphysics

Designing Tracking Method using Compensating Acceleration with FCM for Maneuvering Target (FCM 기반 추정 가속도 보상을 이용한 기동표적 추적기법 설계)

  • Son, Hyun-Seung;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.3
    • /
    • pp.82-89
    • /
    • 2012
  • This paper presents the intelligent tracking algorithm for maneuvering target using the positional error compensation of the maneuvering target. The difference between measured point and predict point is separated into acceleration and noise. Fuzzy c-mean clustering and predicted impact point are used to get the optimal acceleration value. The membership function is determined for acceleration and noise which are divided by fuzzy c-means clustering and the characteristics of the maneuvering target is figured out. Divided acceleration and noise are used in the tracking algorithm to compensate computational error. The filtering process in a series of the algorithm which estimates the target value recognize the nonlinear maneuvering target as linear one because the filter recognize only remained noise by extracting acceleration from the positional error. After filtering process, we get the estimates target by compensating extracted acceleration. The proposed system improves the adaptiveness and the robustness by adjusting the parameters in the membership function of fuzzy system. To maximize the effectiveness of the proposed system, we construct the multiple model structure. Procedures of the proposed algorithm can be implemented as an on-line system. Finally, some examples are provided to show the effectiveness of the proposed algorithm.

A Study on the Acceptance Factors of the Capital Market Sentiment Index (자본시장 심리지수의 수용요인에 관한 연구)

  • Kim, Suk-Hwan;Kang, Hyoung-Goo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.1-36
    • /
    • 2020
  • This study is to reveal the acceptance factors of the Market Sentiment Index (MSI) created by reflecting the investor sentiment extracted by processing unstructured big data. The research model was established by exploring exogenous variables based on the rational behavior theory and applying the Technology Acceptance Model (TAM). The acceptance of MSI provided to investors in the stock market was found to be influenced by the exogenous variables presented in this study. The results of causal analysis are as follows. First, self-efficacy, investment opportunities, Innovativeness, and perceived cost significantly affect perceived ease of use. Second, Diversity of services and perceived benefits have a statistically significant impact on perceived usefulness. Third, Perceived ease of use and perceived usefulness have a statistically significant effect on attitude to use. Fourth, Attitude to use statistically significantly influences the intention to use, and the investment opportunities as an independent variable affects the intention to use. Fifth, the intention to use statistically significantly affects the final dependent variable, the intention to use continuously. The mediating effect between the independent and dependent variables of the research model is as follows. First, The indirect effect on the causal route from diversity of services to continuous use intention was 0.1491, which was statistically significant at the significance level of 1%. Second, The indirect effect on the causal route from perceived benefit to continuous use intention was 0.1281, which was statistically significant at the significance level of 1%. The results of the multi-group analysis are as follows. First, for groups with and without stock investment experience, multi-group analysis was not possible because the measurement uniformity between the two groups was not secured. Second, the analysis result of the difference in the effect of independent variables of male and female groups on the intention to use continuously, where measurement uniformity was secured between the two groups, In the causal route from usage attitude to usage intention, women are higher than men. And in the causal route from use intention to continuous use intention, males were very high and showed statistically significant difference at significance level 5%.

Critical Success Factor of Noble Payment System: Multiple Case Studies (새로운 결제서비스의 성공요인: 다중사례연구)

  • Park, Arum;Lee, Kyoung Jun
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.59-87
    • /
    • 2014
  • In MIS field, the researches on payment services are focused on adoption factors of payment service using behavior theories such as TRA(Theory of Reasoned Action), TAM(Technology Acceptance Model), and TPB (Theory of Planned Behavior). The previous researches presented various adoption factors according to types of payment service, nations, culture and so on even though adoption factors of identical payment service were presented differently by researchers. The payment service industry relatively has strong path dependency to the existing payment methods so that the research results on the identical payment service are different due to payment culture of nation. This paper aims to suggest a successful adoption factor of noble payment service regardless of nation's culture and characteristics of payment and prove it. In previous researches, common adoption factors of payment service are convenience, ease of use, security, convenience, speed etc. But real cases prove the fact that adoption factors that the previous researches present are not always critical to success to penetrate a market. For example, PayByPhone, NFC based parking payment service, successfully has penetrated to early market and grown. In contrast, Google Wallet service failed to be adopted to users despite NFC based payment method which provides convenience, security, ease of use. As shown in upper case, there remains an unexplained aspect. Therefore, the present research question emerged from the question: "What is the more essential and fundamental factor that should takes precedence over factors such as provides convenience, security, ease of use for successful penetration to market". With these cases, this paper analyzes four cases predicted on the following hypothesis and demonstrates it. "To successfully penetrate a market and sustainably grow, new payment service should find non-customer of the existing payment service and provide noble payment method so that they can use payment method". We give plausible explanations for the hypothesis using multiple case studies. Diners club, Danal, PayPal, Square were selected as a typical and successful cases in each category of payment service. The discussion on cases is primarily non-customer analysis that noble payment service targets on to find the most crucial factor in the early market, we does not attempt to consider factors for business growth. We clarified three-tier non-customer of the payment method that new payment service targets on and elaborated how new payment service satisfy them. In case of credit card, this payment service target first tier of non-customer who can't pay for because they don't have any cash temporarily but they have regular income. So credit card provides an opportunity which they can do economic activities by delaying the date of payment. In a result of wireless phone payment's case study, this service targets on second of non-customer who can't use online payment because they concern about security or have to take a complex process and learn how to use online payment method. Therefore, wireless phone payment provides very convenient payment method. Especially, it made group of young pay for a little money without a credit card. Case study result of PayPal, online payment service, shows that it targets on second tier of non-customer who reject to use online payment service because of concern about sensitive information leaks such as passwords and credit card details. Accordingly, PayPal service allows users to pay online without a provision of sensitive information. Final Square case result, Mobile POS -based payment service, also shows that it targets on second tier of non-customer who can't individually transact offline because of cash's shortness. Hence, Square provides dongle which function as POS by putting dongle in earphone terminal. As a result, four cases made non-customer their customer so that they could penetrate early market and had been extended their market share. Consequently, all cases supported the hypothesis and it is highly probable according to 'analytic generation' that case study methodology suggests. We present for judging the quality of research designs the following. Construct validity, internal validity, external validity, reliability are common to all social science methods, these have been summarized in numerous textbooks(Yin, 2014). In case study methodology, these also have served as a framework for assessing a large group of case studies (Gibbert, Ruigrok & Wicki, 2008). Construct validity is to identify correct operational measures for the concepts being studied. To satisfy construct validity, we use multiple sources of evidence such as the academic journals, magazine and articles etc. Internal validity is to seek to establish a causal relationship, whereby certain conditions are believed to lead to other conditions, as distinguished from spurious relationships. To satisfy internal validity, we do explanation building through four cases analysis. External validity is to define the domain to which a study's findings can be generalized. To satisfy this, replication logic in multiple case studies is used. Reliability is to demonstrate that the operations of a study -such as the data collection procedures- can be repeated, with the same results. To satisfy this, we use case study protocol. In Korea, the competition among stakeholders over mobile payment industry is intensifying. Not only main three Telecom Companies but also Smartphone companies and service provider like KakaoTalk announced that they would enter into mobile payment industry. Mobile payment industry is getting competitive. But it doesn't still have momentum effect notwithstanding positive presumptions that will grow very fast. Mobile payment services are categorized into various technology based payment service such as IC mobile card and Application payment service of cloud based, NFC, sound wave, BLE(Bluetooth Low Energy), Biometric recognition technology etc. Especially, mobile payment service is discontinuous innovations that users should change their behavior and noble infrastructure should be installed. These require users to learn how to use it and cause infra-installation cost to shopkeepers. Additionally, payment industry has the strong path dependency. In spite of these obstacles, mobile payment service which should provide dramatically improved value as a products and service of discontinuous innovations is focusing on convenience and security, convenience and so on. We suggest the following to success mobile payment service. First, non-customers of the existing payment service need to be identified. Second, needs of them should be taken. Then, noble payment service provides non-customer who can't pay by the previous payment method to payment method. In conclusion, mobile payment service can create new market and will result in extension of payment market.