• Title/Summary/Keyword: 다중시기 위성영상

Search Result 71, Processing Time 0.027 seconds

Analysing of Forest Types in Chungnam Coastal area Using Multi-Temporal Satellite imagery and ASTER DEM Data (다중시기 위성영상과 ASTER DEM자료를 이용한 충남해안지역의 임상 변화 분석)

  • KIM, Jang-soo;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.1
    • /
    • pp.69-81
    • /
    • 2012
  • This study analyzed the relationship between the geomorphic factor and changes in forest types of the Chungnam coastal area using ASTER DEM and multi-temporal satellite imagery. The results showed that in case coniferous forests vary by altitudinal segments, reduction rate continuously increased up to 500m, but dropped upon exceeding 550 meters. Next, the variation rate of mixed forests by altitudinal segments decreased from less than 50m. However, the variation rate of mixed forests increased from more than 50m to 700m, but dropped upon exceeding 700m. Lastly, the variation rate of deciduous forests according to altitudinal segments increased at all altitudes. A sharp increase was found in segments of more than 550 meters. With regard to the changes in the distribution area of forest types according to slope aspects, coniferous forests showed a reduction in all slope aspects. The reduction rate was especially higher in northern, northwestern, western and northeastern aspects. Mixed forests manifested a high growth rate in northwestern, northern and western aspects, but slightly decreased in eastern and southeastern aspects. In addition, deciduous forests increased in all slope aspects, but the growth rate was especially high in eastern, southeastern, northeastern and southern aspects.

Land Cover Classification Based on High Resolution KOMPSAT-3 Satellite Imagery Using Deep Neural Network Model (심층신경망 모델을 이용한 고해상도 KOMPSAT-3 위성영상 기반 토지피복분류)

  • MOON, Gab-Su;KIM, Kyoung-Seop;CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.252-262
    • /
    • 2020
  • In Remote Sensing, a machine learning based SVM model is typically utilized for land cover classification. And study using neural network models is also being carried out continuously. But study using high-resolution imagery of KOMPSAT is insufficient. Therefore, the purpose of this study is to assess the accuracy of land cover classification by neural network models using high-resolution KOMPSAT-3 satellite imagery. After acquiring satellite imagery of coastal areas near Gyeongju City, training data were produced. And land cover was classified with the SVM, ANN and DNN models for the three items of water, vegetation and land. Then, the accuracy of the classification results was quantitatively assessed through error matrix: the result using DNN model showed the best with 92.0% accuracy. It is necessary to supplement the training data through future multi-temporal satellite imagery, and to carry out classifications for various items.

Vessel Detection Using Satellite SAR Images and AIS Data (위성 SAR 영상과 AIS을 활용한 선박 탐지)

  • Lee, Kyung-Yup;Hong, Sang-Hoon;Yoon, Bo-Yeol;Kim, Youn-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.2
    • /
    • pp.103-112
    • /
    • 2012
  • We demonstrate the preliminary results of ship detection application using synthetic aperture radar (SAR) and automatic identification system (AIS) together. Multi-frequency and multi-temporal SAR images such as TerraSAR-X and Cosmo-SkyMed (X-band), and Radarsat-2 (C-band) are acquired over the West Sea in South Korea. In order to compare with SAR data, we also collected an AIS data. The SAR data are pre-processed considering by the characteristics of scattering mechanism as for sea surface. We proposed the "Adaptive Threshold Algorithm" for classification ship efficiently. The analyses using the combination of the SAR and AIS data with time series will be very useful to ship detection or tracing of the ship.

A Case Study of Land-cover Classification Based on Multi-resolution Data Fusion of MODIS and Landsat Satellite Images (MODIS 및 Landsat 위성영상의 다중 해상도 자료 융합 기반 토지 피복 분류의 사례 연구)

  • Kim, Yeseul
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1035-1046
    • /
    • 2022
  • This study evaluated the applicability of multi-resolution data fusion for land-cover classification. In the applicability evaluation, a spatial time-series geostatistical deconvolution/fusion model (STGDFM) was applied as a multi-resolution data fusion model. The study area was selected as some agricultural lands in Iowa State, United States. As input data for multi-resolution data fusion, Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat satellite images were used considering the landscape of study area. Based on this, synthetic Landsat images were generated at the missing date of Landsat images by applying STGDFM. Then, land-cover classification was performed using both the acquired Landsat images and the STGDFM fusion results as input data. In particular, to evaluate the applicability of multi-resolution data fusion, two classification results using only Landsat images and using both Landsat images and fusion results were compared and evaluated. As a result, in the classification result using only Landsat images, the mixed patterns were prominent in the corn and soybean cultivation areas, which are the main land-cover type in study area. In addition, the mixed patterns between land-cover types of vegetation such as hay and grain areas and grass areas were presented to be large. On the other hand, in the classification result using both Landsat images and fusion results, these mixed patterns between land-cover types of vegetation as well as corn and soybean were greatly alleviated. Due to this, the classification accuracy was improved by about 20%p in the classification result using both Landsat images and fusion results. It was considered that the missing of the Landsat images could be compensated for by reflecting the time-series spectral information of the MODIS images in the fusion results through STGDFM. This study confirmed that multi-resolution data fusion can be effectively applied to land-cover classification.

The Suspended Sediment Change Detection of Imha Dam Using Multi-Temporal Satellite Data (다중시기 위성영상을 이용한 임하댐 부유사 변화탐지)

  • Jeong, Jong-Chul
    • Spatial Information Research
    • /
    • v.15 no.1
    • /
    • pp.25-33
    • /
    • 2007
  • The purpose of this study is to assess spatio-temporal variation of Imha Dam water quality according to suspended sediment algorithm using Landsat and SPOT 5 data. In order to learn synchronous suspended sediment concentrations(SSC) in Imha Dam waters, the satellite remote sensing data are analyzed. The key procedure of this research is that we should know the relationships between suspended sediment concentrations and satellite-detected reflectance. However, the SSC algorithm has the limitation that it must be compared calculated SSC with synchronous ground-truth data in the Dam water. Based upon the linear response from satellite-detected reflectance, SSC algorithm validated an efficient algorithm to estimate proportional factor and then derived an empirical equation far SSC estimations.

  • PDF

Relative Radiometric Normalization for High-Spatial Resolution Satellite Imagery Based on Multilayer Perceptron (다층 퍼셉트론 기반 고해상도 위성영상의 상대 방사보정)

  • Seo, Dae Kyo;Eo, Yang Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.515-523
    • /
    • 2018
  • In order to obtain consistent change detection result for multi-temporal satellite images, preprocessing must be performed. In particular, the preprocessing related to the spectral values can be performed by the radiometric normalization, and relative radiometric normalization is generally utilized. However, most relative radiometric normalization methods assume a linear relationship between the two images, and nonlinear spectral characteristics such as phenological differences are not considered. Therefore, this study proposes a relative radiometric normalization which assumes nonlinear relationships that can perform compositive normalization of radiometric and phenological characteristics. The proposed method selects the subject and reference images, and then extracts the radiometric control set samples through the no-change method. In addition, spectral indexes as well as pixel values are extracted in order to consider sufficient information, and modeling of nonlinear relationships is performed through multilayer perceptron. Finally, the proposed method is compared with the conventional relative radiometric normalization methods, which shows that the proposed method is visually and quantitatively superior.

Monitoring of the Changes of Tidal Land at Simpo Coast with Sea Surface inside Saemangeum Embankment Using Multi-temporal Satellite Image (다중시기 위성영상을 이용한 새만금 방조제 내측 해수면에 의한 심포항 연안의 간석지 지형 변화 탐지)

  • Lee, Hong-Ro;Lee, Jae-Bong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.1
    • /
    • pp.13-22
    • /
    • 2005
  • This paper classifies the topography of the Saemangeum Tidal flats based on Landsat TM satellite images by unsupervised ISODATA method, and analysis of the spatiotemporal changes of the classified shapes. The sedimental topography represents various properties according to the Saemangeum Tidal Embankment progress. We well proceed this study of the sedimental changes and distributions. By specifying the topographic characteristics of inner sea areas respectively, the investigation on the case study area according to the changes of the tidal will be useful in the establishment of land reclamation plan and the land use of the reclaimed area. In addition, the estuary image can be divided into tidal flats and sea surfaces using the band 4, also the detailed topography using the band 5, respectively among Landsat TM 7 bands. This paper contributes to the efficient image processing of the spatiotemporal sedimental changes.

  • PDF

Analytic Techniques for Change Detection using Landsat (Landast 영상을 이용한 변화탐지 분석 기법 연구)

  • Choi, Chul-Uong;Lee, Chang-Hun;Suh, Yong-Cheol;Kim, Ji-Yong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.3
    • /
    • pp.13-20
    • /
    • 2009
  • Techniques for change detection using satellite images enable efficient detection of natural and artificial changes in use of land through multi-phase images. As for change detection, different results are made based on methods of calibration of satellite images, types of input data, and techniques in change analysis. Thus, an analytic technique that is appropriate to objectives of a study shall be applied as results are different based on diverse conditions even when an identical satellite and an identical image are used for change detection. In this study, Normalized Difference Vegetation Index (NDVI) and Principal Component Analysis (PCA) were conducted after geometric calibration of satellite images which went through absolute and relative radiometric calibrations and change detection analysis was conducted using Image Difference (ID) and Image Rationing (IR). As a result, ID-NDVI showed excellent accuracy in change detection related to vegetation. ID-PCA showed 90% of accuracy in all areas. IR-NDVI had 90% of accuracy while it was 70% and below as for paddies and dry fields${\rightarrow}$grassland. IR-PCA had excellent change detection over all areas.

  • PDF

Applicability Evaluation of Spatio-Temporal Data Fusion Using Fine-scale Optical Satellite Image: A Study on Fusion of KOMPSAT-3A and Sentinel-2 Satellite Images (고해상도 광학 위성영상을 이용한 시공간 자료 융합의 적용성 평가: KOMPSAT-3A 및 Sentinel-2 위성영상의 융합 연구)

  • Kim, Yeseul;Lee, Kwang-Jae;Lee, Sun-Gu
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.1931-1942
    • /
    • 2021
  • As the utility of an optical satellite image with a high spatial resolution (i.e., fine-scale) has been emphasized, recently, various studies of the land surface monitoring using those have been widely carried out. However, the usefulness of fine-scale satellite images is limited because those are acquired at a low temporal resolution. To compensate for this limitation, the spatiotemporal data fusion can be applied to generate a synthetic image with a high spatio-temporal resolution by fusing multiple satellite images with different spatial and temporal resolutions. Since the spatio-temporal data fusion models have been developed for mid or low spatial resolution satellite images in the previous studies, it is necessary to evaluate the applicability of the developed models to the satellite images with a high spatial resolution. For this, this study evaluated the applicability of the developed spatio-temporal fusion models for KOMPSAT-3A and Sentinel-2 images. Here, an Enhanced Spatial and Temporal Adaptive Fusion Model (ESTARFM) and Spatial Time-series Geostatistical Deconvolution/Fusion Model (STGDFM), which use the different information for prediction, were applied. As a result of this study, it was found that the prediction performance of STGDFM, which combines temporally continuous reflectance values, was better than that of ESTARFM. Particularly, the prediction performance of STGDFM was significantly improved when it is difficult to simultaneously acquire KOMPSAT and Sentinel-2 images at a same date due to the low temporal resolution of KOMPSAT images. From the results of this study, it was confirmed that STGDFM, which has relatively better prediction performance by combining continuous temporal information, can compensate for the limitation to the low revisit time of fine-scale satellite images.

Application of the Rule-Based Image Classification Method to Jeju Island (규칙기반 영상분류 방법의 제주도 지역의 적용)

  • Lee, Jin-A;Lee, Sung-Soon
    • Spatial Information Research
    • /
    • v.21 no.1
    • /
    • pp.63-73
    • /
    • 2013
  • Geographic features are reflected in satellite images, which contain characteristic elements. Information on changes can be obtained through a comparison of images taken at different times. If multi-temporal images can be classified through the use of an unsupervised method, this is likely to improve the accuracy of image classification and contribute to various applications. A rule-based image classification algorithm for automatic processing without human involvement has been developed, but it must be verified that its results are not affected by imperfect elements. In this study, Landsat images of Jeju Island were used to carry out a rule-based image classification. The application results were examined for complex cases, including the presence of clouds in the images, different photographed times, and the type of target area, such as city, mountain, or field. The presence of clouds did not affect calculations, and appropriate classification rules were applied, depending on the different photographed times. The expansion of the urban areas of Jeju and the increase of facilities such as vinyl greenhouses in Seoguipo were identified. Furthermore, space information changes and accurate classifications for Jeju Island were obtained. With the goal of performing high-quality unsupervised classifications, measures to generalize and improve the methods employed were searched for. The findings of this study could be used in time-series analyses of images for various applications, including urban development and environmental change monitoring.