• Title/Summary/Keyword: 다중시기 위성영상

Search Result 71, Processing Time 0.026 seconds

Particulate Distribution Map of Tidal Flat using Unsupervised Classification of Multi-Temporary Satellite Data (다중시기 위성영상의 무감독분류에 의한 갯벌의 입자 분포도)

  • 정종철
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.2
    • /
    • pp.71-79
    • /
    • 2002
  • This research presents particulate distribution map of tidal flats of Hampyung bay using reflectance which extracted from satellite data and field survey data during same periods. The spectrum of particulate composition obtained from Landsat TM data was analysed and 7 scenes of satellite image were classified with ISODATA and K-MEANS methods. The results of unsupervised classification were estimated with in-situ data. The classification accuracy of ISODATA and K-MAMS methods were 84.3% and 85.7%. For validation of classified results of multi-temporal satellite images, TM image of May 1999(reference data), which was classified with field survey data was compared with classified results of multi-temporary satellite data.

The Applicability for Earth Surface Monitoring Based on 3D Wavelet Transform Using the Multi-temporal Satellite Imagery (다중시기 위성영상을 이용한 3차원 웨이블릿 변환의 지구모니터링 응용가능성 연구)

  • Yoo, Hee-Young;Lee, Ki-Won
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.560-574
    • /
    • 2011
  • Satellite images that have been obtained periodically and continuously are very effective data to monitor the changes of Earth's surface. Traditionally, the studies on change detection using satellite images have mainly focused on comparison between two results after analyzing two images respectively. However, the interests in researches to catch smooth trends and short duration events from continual multi-temporal images have been increased recently. In this study, we introduce and test an approach based on 3D wavelet transform to analyze the multi-temporal satellite images. 3D wavelet transform can reduce the dimensions of data conserving main trends. Also, it is possible to extract important patterns and to analyze spatial and temporal relations with neighboring pixels using 3D wavelet transform. As a result, 3D wavelet transform is useful to capture the long term trends and short-term events rapidly. In addition, we can expect to get new information through sub-bands of 3D wavelet transform which provide different information by decomposed direction.

Field Crop Classification Using Multi-Temporal High-Resolution Satellite Imagery: A Case Study on Garlic/Onion Field (고해상도 다중시기 위성영상을 이용한 밭작물 분류: 마늘/양파 재배지 사례연구)

  • Yoo, Hee Young;Lee, Kyung-Do;Na, Sang-Il;Park, Chan-Won;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.621-630
    • /
    • 2017
  • In this paper, a study on classification targeting a main production area of garlic and onion was carried out in order to figure out the applicability of multi-temporal high-resolution satellite imagery for field crop classification. After collecting satellite imagery in accordance with the growth cycle of garlic and onion, classifications using each sing date imagery and various combinations of multi-temporal dataset were conducted. In the case of single date imagery, high classification accuracy was obtained in December when the planting was completed and March when garlic and onion started to grow vigorously. Meanwhile, higher classification accuracy was obtained when using multi-temporal dataset rather than single date imagery. However, more images did not guarantee higher classification accuracy. Rather, the imagery at the planting season or right after planting reduced classification accuracy. The highest classification accuracy was obtained when using the combination of March, April and May data corresponding the growth season of garlic and onion. Therefore, it is recommended to secure imagery at main growth season in order to classify garlic and onion field using multi-temporal satellite imagery.

Fine Registration between Very High Resolution Satellite Images Using Registration Noise Distribution (등록오차 분포특성을 이용한 고해상도 위성영상 간 정밀 등록)

  • Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.3
    • /
    • pp.125-132
    • /
    • 2017
  • Even after applying an image registration, Very High Resolution (VHR) multi-temporal images acquired from different optical satellite sensors such as IKONOS, QuickBird, and Kompsat-2 show a local misalignment due to dissimilarities in sensor properties and acquisition conditions. As the local misalignment, also referred to as Registration Noise (RN), is likely to have a negative impact on multi-temporal information extraction, detecting and reducing the RN can improve the multi-temporal image processing performance. In this paper, an approach to fine registration between VHR multi-temporal images by considering local distribution of RN is proposed. Since the dominant RN mainly exists along boundaries of objects, we use edge information in high frequency regions to identify it. In order to validate the proposed approach, datasets are built from VHR multi-temporal images acquired by optical satellite sensors. Both qualitative and quantitative assessments confirm the effectiveness of the proposed RN-based fine registration approach compared to the manual registration.

Development of a Compound Classification Process for Improving the Correctness of Land Information Analysis in Satellite Imagery - Using Principal Component Analysis, Canonical Correlation Classification Algorithm and Multitemporal Imagery - (위성영상의 토지정보 분석정확도 향상을 위한 응용체계의 개발 - 다중시기 영상과 주성분분석 및 정준상관분류 알고리즘을 이용하여 -)

  • Park, Min-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4D
    • /
    • pp.569-577
    • /
    • 2008
  • The purpose of this study is focused on the development of compound classification process by mixing multitemporal data and annexing a specific image enhancement technique with a specific image classification algorithm, to gain more accurate land information from satellite imagery. That is, this study suggests the classification process using canonical correlation classification technique after principal component analysis for the mixed multitemporal data. The result of this proposed classification process is compared with the canonical correlation classification result of one date images, multitemporal imagery and a mixed image after principal component analysis for one date images. The satellite images which are used are the Landsat 5 TM images acquired on July 26, 1994 and September 1, 1996. Ground truth data for accuracy assessment is obtained from topographic map and aerial photograph, and all of the study area is used for accuracy assessment. The proposed compound classification process showed superior efficiency to appling canonical correlation classification technique for only one date image in classification accuracy by 8.2%. Especially, it was valid in classifying mixed urban area correctly. Conclusively, to improve the classification accuracy when extracting land cover information using Landsat TM image, appling canonical correlation classification technique after principal component analysis for multitemporal imagery is very useful.

Land Use/Cover Classification Nomenclature for Urban Growth Analysis (도시성장 분석을 위한 위성영상 토지이용 분류기준 설정)

  • 김윤수;이광재;류지원
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.537-543
    • /
    • 2003
  • 도시의 물리적 성장을 분석하기Hl 원격탐사 자료는 매우 유용한 도구를 제공한다 할 수 있다. 도시의 물리적 성장은 도시의 토지이용과 밀접하게 관련되어 있으며 지속 가능한 도시성장을 위하여서는 토지이용을 중심으로 한 성장관리가 필수적이다. 그러나 위성영상을 이용한 도시 토지이용의 분류는 우선 그 기준이 사용자의 관점에 따라 다르고 영상의 해상도 등에 따라 달리 그 기준이 정해질 수 있다. 도시의 성장 분석을 위해서는 다중시기의 위성영상 및 항공사진을 이용하여 토지이용 분류를 수행하고 시기별 토지이용 변화와 양상을 분석함으로써 성장요인을 추출하고 이를 기반으로 향후의 도시 성장을 예측할 수 있는 성장모델 개발이 가능해 진다. 따라서 본 연구에서는 도시성장 예측모델 개발의 전 단계로써 도시의 성장관리를 위해 사용되는 다양한 공간 해상도를 지닌 원격탐사 자료의 국내외 다양한 분류기준의 검토를 통해 토지이용 분류 기준을 도시 성장관리의 측면에서 설정하고자 한다.

  • PDF

Landuse Classification Nomenclature for Urban Growth Analysis using Satellite Imagery (도시확장 분석을 위한 위성영상 토지이용 분류기준 설정에 관한 연구)

  • Kim, Youn-Soo;Lee, Kwang-Jae;Ryu, Ji-Won;Kim, Jung-Hwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.3
    • /
    • pp.83-94
    • /
    • 2003
  • All the urban planning process require land use informations, which should be obtained after through intensive investigation and accurate analysis about the past and current situations and conditions of a city. Until now, the generation of land use informations from remotely sensed imagery has had many limitation because of its spatial resolution. It is now expected that the availability of high resolution satellite imagery whose spatial resolution less than 10m will reduce these limitations. For the purpose of urban growth monitoring we must first establish a urban land use classification nomenclature. In this study, we would like to establish a land use nomenclature for land use classification using remotely sensed data, especially using KOMPSAT EOC imagery.

  • PDF

Extraction of DEM in the Southern Tidal Flat of Kanghwa Island using Satellite Image (위성영상을 이용한 강화도 남단갯벌의 DEM 추출)

  • 박성우;정종철
    • Spatial Information Research
    • /
    • v.11 no.1
    • /
    • pp.13-22
    • /
    • 2003
  • The study of geomorphology of tidal flat using remote sensing image has been considered useful because of it's ability to acquire data periodically. Especially, the Near Infrared band of satellite image has been used to divide between land and sea area. This study extracted a borderline of the tidal flat using Landsat-5 images and generated DEM(Digital elevation model) using tide level data as elevation value. DEM is a useful tool for three-dimensional survey of geomorphology and can be used for survey of tidal flat. This study divided 8 images of 1990's into two parts - before 1994 and after 1994 - and generated DEM respectively. In this work, the areas of tidal flats are calculated and it was revealed the area of tidal flat was decreased after 1994.

  • PDF

Estimation of Spatio-temporal soil moisture and drought index based on MODIS multi-satellite images (MODIS 다중 위성영상 기반의 토양수분 및 가뭄지수 산정연구)

  • Chung, Jeehun;Kim, Juyeon;Kim, Hyeongseok;Jeong, Daeun;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.446-446
    • /
    • 2022
  • 본 연구에서는 MODIS(MODerate resolution Imaging Spectroradiometer) 다중 위성영상을 기반으로 전국 시공간 토양수분 및 토양수분 기반의 가뭄지수 SWDI(Soil Water Deficit Index)를 산정하였다. 시공간 토양수분의 산정을 위해 입력자료로 MODIS 위성의 지표면온도(Land Surface Temperature, LST), 증발산 및 식생(Enhanced Vegetation Index, EVI; Fraction of Photosynthetically Active Radiation, FPAR; Leaf Area Index, LAI; Normalized Difference Vegetation Index, NDVI) 관련 산출물 자료와 지상 관측자료인 일 단위 강수량 자료를 구축하였다. MODIS 위성영상은 산출물별로 제공되는 QC(Quality Control) 영상을 활용해 보정을 수행하였고, 공간 강수량 자료는 기상청에서 제공하는 전국 92개 지점의 종관기상관측자료를 구축하여 공간보간기법인 역거리가중법을 적용해 생성하였다. 실측 토양수분은 농촌진흥청에서 제공하는 76개 지점의 토양 깊이 10 cm에 설치된 TDR(Time Domain Reflectomerty) 센서에서 측정된 토양수분 자료를 활용하였으며, 토양수분 모의 시 토양 속성을 고려하기 위해 국립농업과학원에서 제공하는 토양도를 구축하여 활용하였다. 토양수분 산정 모형은 다중선형회귀모형(Multiple Linear Regression Model, MLRM)을 활용하였으며, 계절 및 토성에 따른 회귀식을 산정하였다. 회귀식 기반의 토양수분과 토성별 포장용수량 및 영구위조점 값을 이용하여 SWDI를 산정하고, 실제 가뭄 발생 시기 및 지역과의 비교하고자 한다.

  • PDF