• Title/Summary/Keyword: 다중상부구조물

Search Result 10, Processing Time 0.029 seconds

Nonlinear Dynamic Response Analysis of Slender Rigid Blocks Mounted on Seismic Isolation Systems (격리받침 위에 놓이 세장한 강체 블록의 비선형 동적거동 해석)

  • 김재관;채윤병
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.4
    • /
    • pp.93-104
    • /
    • 2000
  • 적충되어 있는 다중 블록 시스템은 역사적 건물이나 문화재등에 자주 사용되고 있다. 이러한 구조시스템은 지진에 매우 취약하고, 특히 세장한 구조물인 경우에는 낮은 수준의 지반가속도에 대해서도 전도가 일어날 수 있다. 지진으로부터 이러한 구조물을 보호할 수 있는 방법중의 하나로써 지진격기받침의 사용을 들 수 있으나, 아직 격리받침이 설치되어 있는 다중블록의 거동에 대해서는 잘 알려지지 않는 실정이다. 이 논문에서는 각각 P-F 시스템, FPS, LRB 시스템이 설치되어 있을때의 세장한 강체 블록의 동적거동에 대해 살펴보았다. P-F 시스템과 FPS에서의 마찰모델은 Coulomb의 마찰법칙을 이용하였도, 상부구조물은 붙음(stick)모드와 록킹(rocking) 모드만이 존재하도록 가정하였다. 충격은 개별요소법(distinct element method, DEM)을 이용해 기술하였고, 조화입력운동에 대한 응답을 조사하였다.

  • PDF

Gas Hydrate Occurrence in the Southwestern Slope of the Ulleung Basin, East Sea, Inferred from Seismic Evidence (동해 울릉분지 남서 사면지역에서 탄성파 특징으로부터 유추한 가스 수화물의 존재 가능성)

  • Hong, Jong-Kuk;Yoo, Hai-Soo;Jou, Hyeong-Tae;Han, Sang-Joon;Choi, Dong-Lim
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.4
    • /
    • pp.242-248
    • /
    • 2001
  • A high resolution Chirp seismic profile and a multichannel seismic reflection profile were analysed to study the possibility of gas hydrate presence in the southwestern upper slope of the Ulleung Basin. The Chirp profile shows acoustic turbidity, acoustic void, and pockmarks, suggesting the presence of shallow gas in the sediments .Slope failures appear to have occurred in association with decomposition of gas hydrated sediments. A bottom-simulating reflector (BSR) is seen in subbottom depths of 60 to 110 m below the seafloor at water depths of 750 to 1130 m. The sediments above BSR are characterized by acoustic blanking probably due to amplitude reduction caused by a mixture of gas hydrate with sediments. The interval velocity above the BSR is 1,650 m/sec and it drops abruptly to 1,080 m/sec below the BSR. The sediment column between seafloor and the BSR thins with increasing water depth, which is very closely related to increasing geothermal gradient with increasing water depth in the Ulleung Basin.

  • PDF

Sensitivity Analysis and Estimation of the Depth of Investigation in Small-Loop EM Surveys (소형루프 전자탐사의 감도분석 및 가탐심도 추정)

  • Song Yoonho;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.299-308
    • /
    • 2002
  • We have derived an analytical expression for the sensitivity of the frequency domain small-loop electromagnetic (EM) surveys over a two-layer earth in order to estimate the depth of investigation with an instrument having the source-receiver separation of about 2 m. We analyzed the sensitivities to the lower layer normalized by those to the upper half-space and estimated the depth of investigation from the sensitivity analyses and the mutual impedance ratio. The computational results showed that the in-phase components of the sensitivity to the lower layer dominates those to the upper layer when the thickness of the upper layer is less than 20 m, while the quadrature components are not sensitive to the lower layer over the entire frequency range. Hence we confirmed that the accurate measurement of the in-phase component is essential to increase the depth of investigation in the multi-frequency small-loop EM survey. When conductive basement of 10 ohm-m underlies the upper layer of 100 ohm-m, an accurate measurement of the in-phase components ensures the depth of the investigation more than 10 m even accounting a noise effect, from which we conclude that the small-loop EM survey is quite effective in imaging the conductive plume down to a considerable depth. On the other hand, in the presence of the resistive basement of 1,000 ohm-m, the depth of investigation may not exceed 5 m considering the instrumental accuracy, which implies that the application of the small-loop EM survey is not recommended over the resistive environment other than detecting the buried conductor.

Calculation of Load on Jacket Leg during Float-over Installation of Dual Topsides using Single Vessel (단일 설치선을 사용한 2기 해양플랜트 Topside Float Over 설치 시 Jacket Leg의 하중 계산)

  • Bae, Dong-Yeol;Lee, Seung-Jae;Lee, Jaeyong
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.135-142
    • /
    • 2015
  • The float over method is the most preferred method for installing heavy topside onto a jacket platform. A very complex platform with multiple jacket structures on a specific field requires multiple installation procedures. This study validated the installation of two topsides using a single installation barge to reduce the operation and installation cost. The hydrodynamic properties of the installation barge during the installation of two topsides were calculated. The tension and fender forces during docking were investigated to show the validity of the proposed dual topside installation method. In conclusion, the operational safety of the proposed procedure was validated through the calculation of the motion of the installation vessel and loads on the jacket legs.

Back Analysis Method for Material Properties of Multi-layers Ground Considering Multiple Unknown Variables (다중 미지변수를 고려한 다층지반 역해석)

  • Kim, Se-Jin;Kim, Moon-Kyum;Won, Jong-Hwa;Kim, Jung-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.9
    • /
    • pp.93-100
    • /
    • 2009
  • A core procedure of the direct search method used in this study is optimizing a difference between objective function and real displacement and correcting unknown variables. Because the research procedure comes from back-analyzing of the unknown variable of each layer, back-analyzing results need an additional optimization to minimize interferential effects of unknown variables. Therefore, the direct search method Is used to obtain optimized solutions without a partial differentiation of an objective function. The object of this research is developing the back analysis technique for multi-unknown variables by modeling the soil including underground structure Into upper and lower layer. In order to minimize interferent errors, repeated back analysis is performed and applicability on the real tunnel is examined. Consequently, the multi-layer analysis model is more precise in describing the real behavior of underground structure. It shows the validity of back analysis far multi-layer model which is the understructure placed on multi-layer boundaries.

Tectonic Structures and Hydrocarbon Potential in the Central Bransfield Basin, Antarctica (남극 브랜스필드 해협 중앙분지의 지체구조 및 석유부존 가능성)

  • Huh Sik;Kim Yeadong;Cheong Dae-Kyo;Jin Young Keun;Nam Sang Heon
    • The Korean Journal of Petroleum Geology
    • /
    • v.5 no.1_2 s.6
    • /
    • pp.9-15
    • /
    • 1997
  • The study area is located in the Central Bransfield Basin, Antarctica. To analyze the morphology of seafloor, structure of basement, and seismic stratigraphy of the sedimentary layers, we have acquired, processed, and interpreted the multi-channel seismic data. The northwest-southeastern back-arc extension dramatically changes seafloor morphology, volcanic and fault distribution, and basin structure along the spreading ridges. The northern continental shelf shows a narrow, steep topography. In contrast, the continental shelf or slope in the south, which is connected to the Antarctic Peninsula, has a gentle gradient. Volcanic activities resulted in the formation of large volcanos and basement highs near the spreading center, and small-scale volcanic diapirs on the shelf. A very long, continuous normal fault characterizes the northern shelf, whereas several basinward synthetic faults probably detach into the master fault in the south. Four transfer faults, the northwest-southeastern deep-parallel structures, controlled the complex distributions of the volcanos, normal faults, depocenters, and possibly hydrocarbon provinces in the study area. They have also deformed the basement structure and depositional pattern. Even though the Bransfield Basin was believed to be formed in the Late Cenozoic (about 4 Ma), the hydrocarbon potential may be very high due to thick sediment accumulation, high organic contents, high heat flow resulted from the active tectonics, and adequate traps.

  • PDF

A Survey Report on the Polymetallic Mineralization in the Oyon Mineralized District, Central Peru (페루 중부 오욘 다중금속 광화작용에 대한 조사보고)

  • Lee, Jaeho;Kim, Injoon;Nam, Hyeong-tae
    • Economic and Environmental Geology
    • /
    • v.50 no.1
    • /
    • pp.73-83
    • /
    • 2017
  • The surveyed mines are located in a polymetallic vein, replacement, and skarn mineral district in the central Andes of Peru. Iscaycruz, which includes underground and open pit mines that produce zinc and lead concentrates, was the largest mineral deposit of an important group of base metal deposits in the Andes of central Peru. The deposits are sub-vertical seams of polymetallic ores(Zn, Cu, and Pb). These seams are hosted by Jurassic and Cretaceous sedimentary rock formation. The intrusion of igneous rocks in these formations originated metallic deposits of metasomatic and skarn types. The Raura mine is composed of polymetallic deposit of veins and replacement orebodies. The main sedimentary unit in the area is Cretaceous Machay Limestone. The Raura depression contains several orebodies each with different mineralization: predominantly Pb-Zn bearing Catuvo orebody; Ag-rich galena-bearing Lake Ninacocha orebody; Cu-Ag bearing Esperanza and Restauradora orebody. Huaron is a hydrothermal polymetallic deposit of silver, lead, zinc, and copper mineralization hosted within structures likely related to the intrusion of monzonite dikes, principally located within the Huaron anticline. Mineralization is encountered in veins parallel to the main fault systems, in replacement bodies known as "mantos" associated with the calcareous sections of the conglomerates and other favourable stratigraphic horizons, and as dissemination in the monzonitic intrusions at vein intersections.

Quantification of Half Cell Potential with Mix Properties in RC Member under Long-Term Chloride Exposure Conditions (장기 염해에 노출된 RC 부재의 배합 특성을 고려한 반 전위의 정량화)

  • Yoon, Yong-Sik;Jeong, Gi-Chan;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.307-313
    • /
    • 2022
  • In this study, the correlation between Half Cell Potential(HCP) and the corrosion influencing factors was analyzed with considering three levels of water-cement ratio, the concentration of chloride solution, and cover depth. As a result of long-term corrosion monitoring, HCP behavior was close to the critical corrosion potential(-350 mV) in all water-cement ratios in the case of 3.5 % and 7.0 % chloride concentration. Regarding the passed charge test in 548 curing days, the passed charge results were improved to 'Moderate' grade. Multiple regression analysis was performed to evaluate the correlation between corrosion influencing factors and HCP, and it was evaluated that the effects of influencing factors to HCP were in the order of chloride concentration, water-cement ratio, and cover depth. In the case of the relationship between HCP and the passed charge, the coefficient of determination showed a high level of 0.9, which yielded a close correlation between the passed charge and HCP.

Seismic Response Analysis of a Floating Bridge with Discrete Pontoons (이산폰툰형 부유식교량의 지진응답해석)

  • Kwon, Jang-Sup
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.2 s.42
    • /
    • pp.47-58
    • /
    • 2005
  • Dynamic response analysis in time dimain is conducted for floating bridges with discrete pontoons subject to spatial variation of ground motions. The Spatial variation of ground motions is considered with the coherency function model which represents wave passage, incoherence and local site effects. The superstructure of the bridge is represented by space frame and elastic catenary cable elements, the abutment us modelde with the spring element of FHWA guideline for considering soil structure interaction and the concept of retardation function is utilized to consider the frequency dependency of the hydrodynamic coefficients which are obtainde by boundary element method. multiple support excitations considering the spatial variation. The noticeable amplification of the response can be shown when the spatial variation of ground motions is incorporated in the anallysis of floating bridges.

Seismic Stratigraphy and Evolutionary History of Submarine Canyon in the Northwestern Part of the Ulleung Basin, East Sea (동해 울릉분지 북서해역에 분포하는 해저협곡의 탄성파 층서와 발달사)

  • Kim, Ji Hyun;Kang, Nyeon Keon;Yi, Bo Yeon;Park, Yong Joon;Yoo, Dong Geun
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.3
    • /
    • pp.146-162
    • /
    • 2017
  • Multibeam and seismic data in the northwestern part of the Ulleung Basin were analyzed to study stratigraphy and evolutionary history of submarine canyon. A detailed analysis reveals that the sedimentary sequences in this area consist of four stratigraphic units separated by erosional unconformities. On the continental slope, these units are dominated by well-stratified facies with some slope failures, whereas these units show well-stratified and chaotic facies toward the basin floor. Generally, the sediment thickness is relatively thin on the slope, whereas thick sediment accumulation occurs on the base of slope and basin floor. Based on seismic characteristics and distribution, the deposition of each units are well correlated with the evolutionary history of the submarine canyon. Unit 1 directly overlying the acoustic basement has thin sediment layer on the slope, whereas its thickness gradually increase toward the basin floor. Compared to other units, Unit 2 is relatively thick accumulations on the slope and contains some slope failures related to faults systems. The mass transport sediments due to slope failures, mainly deposited on the base of slope as a submarine fan. The width and depth of submarine canyon increase due to dominant of the erosional process rather than the sediment deposition. Unit 3 is thin accumulation on the slope around the submarine canyon. Toward the basin floor, its thickness gradually increases. Unit 4 is characterized by thin layers including slides and slumps on the slope, whereas it formed thick accumulations at the base of slope as a submarine fan. The increase in the width and depth of submarine canyon results from the dominant of the erosional process and slope failures around the submarine canyon. Consequently, the formation of sedimentary units combined with the development of submarine canyon in this area is largely controlled by the amounts of sediment supply originated from slope failures, regional tectonic effects and sea-level fluctuations.