• Title/Summary/Keyword: 다중분광

Search Result 306, Processing Time 0.03 seconds

Numerical Design of Double Quantum Coherence Filter for the Detection of Myo-Inositol In vivo (인체 내 myo-Inositol 검출을 위한 수치해석적 이중양자 필터 디자인)

  • Lee, Yun-Jung;Jung, Jin-Young;Noh, Hyung-Joon;Yu, Ung-Sik;Kim, Hyeon-Jin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.2
    • /
    • pp.117-126
    • /
    • 2009
  • Purpose : A numerical method of designing a multiple quantum filter (MQF) is presented for the optimum detection of myo-inositol (mI), an important brain metabolite, by using in vivo proton nuclear magnetic resonance spectroscopy ($^1$-HMRS). Materials and Methods : Starting from the characterization of the metabolite, the filter design includes the optimization of the sequence parameters such as the two echo times (TEs), the mixing time (TM), and the flip angle and offset frequency of the 3rd $90^{\circ}$ pulse which converts multiple quantum coherences (MQCs) back into single quantum coherences (SQCs). The optimized filter was then tested both in phantom and in human brains. Results : The results demonstrate that the proposed MQF can improve the signal-to-background ratio of the target metabolite by a factor of more than three by effectively suppressing the signal from the background metabolites. Conclusion : By incorporating a numerical method into the design of MQFs in $^1$-HMRS the spectral integrity of a target metabolite, in particular, with a complicated spin system can be substantially enhanced.

  • PDF

Comparative Analysis of Pre-processing Method for Standardization of Multi-spectral Drone Images (다중분광 드론영상의 표준화를 위한 전처리 기법 비교·분석)

  • Ahn, Ho-Yong;Ryu, Jae-Hyun;Na, Sang-il;Lee, Byung-mo;Kim, Min-ji;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1219-1230
    • /
    • 2022
  • Multi-spectral drones in agricultural observation require quantitative and reliable data based on physical quantities such as radiance or reflectance in crop yield analysis. In the case of remote sensing data for crop monitoring, images taken in the same area over time-series are required. In particular, biophysical data such as leaf area index or chlorophyll are analyzed through time-series data under the same reference, it can be directly analyzed. So, comparable reflectance data are required. Orthoimagery using drone images, the entire image pixel values are distorted or there is a difference in pixel values at the junction boundary, which limits accurate physical quantity estimation. In this study, reflectance and vegetation index based on drone images were calculated according to the correction method of drone images for time-series crop monitoring. comparing the drone reflectance and ground measured data for spectral characteristics analysis.

Current Status of Hyperspectral Remote Sensing: Principle, Data Processing Techniques, and Applications (초분광 원격탐사의 특성, 처리기법 및 활용 현용)

  • Kim Sun-Hwa;Ma Jung-Rim;Kook Min-Jung;Lee Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.4
    • /
    • pp.341-369
    • /
    • 2005
  • Hyperspectral images have emerged as a new and promising remote sensing data that can overcome the limitations of existing optical image data. This study was designed to provide a comprehensive review on definition, data processing methods, and applications of hyperspectral data. Various types of airborne, spaceborne, and field hyperspectral image sensors were surveyed from the available literatures and internet search. To understand the current status of hyperspectral remote sensing technology and research development, we collected several hundreds research papers from international journals (IEEE Transactions on Geoscience and Remote Sensing, International Journal of Remote Sensing, Remote Sensing of Environment and AVIRIS Workshop Proceedings), and categorized them by sensor types, data processing techniques, and applications. Although several hyperspectral sensors have been developing, AVIRIS has been a primary data source that the most hyperspectral remote sensing researches were relied on. Since hyperspectral data have very large data volume with many spectral bands, several data processing techniques that are particularly oriented to hyperspectral data have been developed. Although atmospheric correction, spectral mixture analysis, and spectral feature extraction are among those processing techniques, they are still in experimental stage and need further refinement until the fully operational adaptation. Geology and mineral exploration were major application in early stage of hyperspectral sensing because of the distinct spectral features of rock and minerals that could be easily observed with hyperspectral data. The applications of hyperspectral sensing have been expanding to vegetation, water resources, and military areas where the multispectral sensing was not very effective to extract necessary information.

Classification of Multi-sensor Remote Sensing Images Using Fuzzy Logic Fusion and Iterative Relaxation Labeling (퍼지 논리 융합과 반복적 Relaxation Labeling을 이용한 다중 센서 원격탐사 화상 분류)

  • Park No-Wook;Chi Kwang-Hoon;Kwon Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.4
    • /
    • pp.275-288
    • /
    • 2004
  • This paper presents a fuzzy relaxation labeling approach incorporated to the fuzzy logic fusion scheme for the classification of multi-sensor remote sensing images. The fuzzy logic fusion and iterative relaxation labeling techniques are adopted to effectively integrate multi-sensor remote sensing images and to incorporate spatial neighboring information into spectral information for contextual classification, respectively. Especially, the iterative relaxation labeling approach can provide additional information that depicts spatial distributions of pixels updated by spatial information. Experimental results for supervised land-cover classification using optical and multi-frequency/polarization images indicate that the use of multi-sensor images and spatial information can improve the classification accuracy.

Identification of Palustrine Wetlands in Paldang Reservoir Using Spectral Mixture Analysis of Multi-temporal Landsat Imagery (다중시기 위성영상의 분광혼합화소분석에 의한 팔당 상수원보호구역의 소택형 습지 판별)

  • Kim, Sang-Wook;Park, Chong-Hwa
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.3
    • /
    • pp.48-55
    • /
    • 2004
  • 본 연구는 중 저해상도 위성영상을 이용하여 하천주변 습지를 판별해내는 보다 개선된 기법을 개발해 내는데 그 목적이 있다. 중 저해상도 위성영상의 하나의 화소는 일반적으로 하나의 동질한 물체의 분광반사값을 나타내기보다는 다양한 분광값을 가진 물체들의 대표값으로 나타나게 된다. 특히 본 연구에서는 식생, 수문 및 토양요소의 혼합체인 습지의 판별을 위해서, 하나의 화소가 하나의 물체를 대표함을 전제로 하는 기존의 분석방법 보다는, 혼합화소 (mixed pixel)를 대상지 의 토지 피복을 가장 잘 반영 하는 순수한 화소값(endmember)들로 분해함으로써 보다 정확한 판별 및 분류를 가능케 하고자 하였다. 이를 위하여 일반적으로 극세분광 위성영상의 분석에 활용되는 기법인 분광혼합화소분석(Spectral Mixture Analysis)을 이용하였는데, 습지 각 화소의 식생, 수문 및 토양요소의 흔합정도를 분해한 후, 이들의 분할영상 (fraction images)을 추출해내고 이를 분석에 이용하였다. 팔당상수원보호구역의 소택형 습지를 대상으로 봄 가을의 Landsat 영상에 대한 분석을 수행하였으며, 도출된 결과는 다음과 같다. 첫째, 봄 가을 각각의 영상에 대하여 4개씩 endmember를 선정하였으며, 분할영상과 원자료 각각에 대하여 습지판별을 수행한 결과, 가을영상에 대하여 분할영상을 이용한 방법의 소택 형 습지 판별 정확도가 가장 높은 값을 보여주었다(생산자 정확도 : 83.3%, 사용자 정확도 : 86.5%). 둘째, 소택형 습지로 판별된 지역만을 대상으로 보다 세분화된 분류가 가능한 지 알아보기 위하여 소택형 습지로 판별된 지역의 영상에 대해 ISODATA 무감독분류를 수행한 결과 2개의 클러스터로 대별되었다. 현장조사, 기존 연구의 수심자료 및 식생에 대한 조사를 바탕으로 위의 2개의 클러스터를 조사한 결과, 수문조건에 따른 분류인 아계(subsystem) 단계의 '영구적 침수형 소택형 습지'와 '계절적 침수형 소택형 습지'로 분류할 수 있었다.

DESIGN & STRUCTURAL ANALYSIS OF MULTI-OPTICAL MOUNT SYSTEME FOR TRACKING/OBSERVING ARTIFICIAL SPACE OBJECTS (인공우주물체 추적/관측을 위한 다중 광학계 탑재용 가대 설계 및 구조해석)

  • Seol, K.H.;Kim, S.J.;Jang, M.;Min, S.W.;Mun, B.S.
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.4
    • /
    • pp.435-444
    • /
    • 2006
  • Since artificial space objects are observable only in a short period of time and the characteristics of their motion is not exactly predictable, it is difficult to obtain both photometric and spectroscopic data by a set of observations. We have, therefore, designed a mount to load multi-optical instruments on the Kyung Hee University (KHU) satellite tracking and observation system for both photometric and spectroscopic observations of artificial space objects. In this paper, we have calculated the deformation of the remodeled mount using structural analyses for the loading of the multi-optical instruments. We have also deduced pointing errors of the mount occurring at tracking and observing artificial space objects. we have derived tracking reliably artificial space objects in our field of view and confirmed structural safety test of mount utilizing equivalent (von-mises) stress distribution.

Change Detection Using Multispectral Satellite Imagery and Panchromatic Satellite Imagery (다중분광 위성영상과 팬크로매틱 위성영상에 의한 변화 검출)

  • Lee, jin-duk;Han, seung-hee;Cho, hyun-go
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.897-901
    • /
    • 2008
  • The objective of this study is to conduct land cover classification respectively using Landsat TM data collected on Oct., 1985 and KOMPSAT-1 EOC data collected on Jan., 2000 covering Gumi city, Gyeongbuk Province and to detect urban change by comparing between both land cover maps. Multispectral images of Landsat TM have spatial resolution of 30m are well known as useful data for extracting information related to landcover, vegetation classification, urban growth analysis and so forth. In contrast, as KOMPSAT-1 EOC collects panchromatic images with relatively high spatial resolution of 6.6m. We try to analyze how accurate landcover classification result is able to be derived from the panchromatic images. As the results of the study, the KOMPSAT EOC data with high resolution greater than 4 times showed higher classification degree than Landsat TM data. It was ascertained that the built-up region was extended by three to four times in the last 15 years between 1985 and 2000. In the contrast, it was shown that the forest region was decreased by 15% to 27% and the grass region including agricultural region was decreased by 28% to 45%.

  • PDF

The study on Decision Tree method to improve land cover classification accuracy of Hyperspectral Image (초분광영상의 토지피복분류 정확도 향상을 위한 Decision Tree 기법 연구)

  • SEO, Jin-Jae;CHO, Gi-Sung;SONG, Jang-Ki
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.3
    • /
    • pp.205-213
    • /
    • 2018
  • Hyperspectral image is more increasing spectral resolution that Multi-spectral image. Because of that, each pixel of the hyperspectral image includes much more information and it is considered the most appropriate technic for land cover classification. but recent research of hyperspectral image is stayed land cover classification of general level. therefore we classified land cover of detail level using ED, SAM, SSS method and made Decision Tree from result of that. As a result, the overall accuracy of general level was improved by 1.68% and the overall accuracy of detail level was improved by 5.56%.

The multi-temporal characteristics of spectral vegetation indices for agricultural land use on RapidEye satellite imagery (농촌지역 토지이용유형별 RapidEye 위성영상의 분광식생지수 시계열 특성)

  • Kim, Hyun-Ok;Yeom, Jong-Min;Kim, Youn-Soo
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.149-155
    • /
    • 2011
  • A fast-changing agriculture environment induced by global warming and abnormal climate conditions demands scientific systems for monitoring and predicting crop conditions as well as crop yields at national level. Remote sensing opens up a new application field for precision agriculture with the help of commercial use of high resolution optical as well as radar satellite data. In this study, we investigated the multi-temporal spectral characteristics relative to different agricultural land use types in Korea using RapidEye satellite imagery. There were explicit differences between vegetation and non-vegetation land use types. Also, within the vegetation group spectral vegetation indices represented differences in temporal changing trends as to plant species and paddy types.

Comparison of Reflectance and Vegetation Index Changes by Type of UAV-Mounted Multi-Spectral Sensors (무인비행체 탑재 다중분광 센서별 반사율 및 식생지수 변화 비교)

  • Lee, Kyung-do;Ahn, Ho-yong;Ryu, Jae-hyun;So, Kyu-ho;Na, Sang-il
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.947-958
    • /
    • 2021
  • This study was conducted to provide basic data for crop monitoring by comparing and analyzing changes in reflectance and vegetation index by sensor of multi-spectral sensors mounted on unmanned aerial vehicles. For four types of unmanned aerial vehicle-mounted multispectral sensors, such as RedEdge-MX, S110 NIR, Sequioa, and P4M, on September 14 and September 15, 2020, aerial images were taken, once in the morning and in the afternoon, a total of 4 times, and reflectance and vegetation index were calculated and compared. In the case of reflectance, the time-series coefficient of variation of all sensors showed an average value of about 10% or more, indicating that there is a limit to its use. The coefficient of variation of the vegetation index by sensor for the crop test group showed an average value of 1.2 to 3.6% in the crop experimental sites with high vitality due to thick vegetation, showing variability within 5%. However, this was a higher value than the coefficient of variation on a clear day, and it is estimated that the weather conditions such as clouds were different in the morning and afternoon during the experiment period. It is thought that it is necessary to establish and implement a UAV flight plan. As a result of comparing the NDVI between the multi-spectral sensors of the unmanned aerial vehicle, in this experiment, it is thought that the RedEdeg-MX sensor can be used together without special correction of the NDVI value even if several sensors of the same type are used in a stable light environment. RedEdge-MX, P4M, and Sequioa sensors showed a linear relationship with each other, but supplementary experiments are needed to evaluate joint utilization through off-set correction between vegetation indices.