• Title/Summary/Keyword: 다중고리방향족탄화수소

Search Result 12, Processing Time 0.036 seconds

A Study on Effect of n-heptane Mixing on PAH and Soot Formation in Counterflow Ethylene Diffusion Flames (대향류 에틸렌 확산화염내 PAH 및 매연의 생성에 미치는 n-헵탄 혼합의 영향에 관한 연구)

  • Choi, Jae-Hyuk;Han, Won-Hui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.1
    • /
    • pp.55-60
    • /
    • 2012
  • In order to investigate the effect of n-heptane mixing on PAH and soot formation, small amount of n-heptane has been mixed in counterflow ethylene diffusion flame. Laser-induced incandescene and laser-induced fluorescene techniques were employed to measure soot volume fraction and polycyclic aromatic hydrocarbon(PAH) concentration, respectively. Results showed that the mixing of n-heptane in ethylene diffusion flame produces more PAHs and soot than those of pure ethylene flame. However, signals of LIF for 20% n-heptane mixture flame were lower than that of pure ethylene flame. It can be considered that the enhancement of PAH and soot formation by the n-heptane mixing of ethylene can be explained by methyl($CH_3$) radical in the low temperature region. And it can be found that reaction rate of H radical for 10% n-heptane plays a crucial role for benzene formation.

Measurement of Soot and PAH in the Diffusion Flame Using Laser Diagnostics (레이저 진단을 이용한 확산화염에서의 매연 및 PAH 의 측정기법)

  • Yoon Seung Suk;Lee Sang Min;Chung Suk Ho
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.108-111
    • /
    • 2004
  • Laser induced incandescence and laser induced fluorescence techniques have been investigated to measure the concentrations of soot and PAH, respectively. The Nd:YAG and dye lasers were used to form a sheet beam, and its wavelength were modulated to obtain a optimized signals of soot and PAH. Results showed that the relative size groups of soot and PAH can be measured by using our laser techniques.

  • PDF

Soot and PAH Formation in Counterflow Diffusion Flames of Ethylene-Propane (에틸렌/프로판 대향류 확산화염에서 PAH 와 매연의 생성특성)

  • Yoon, Seung-Suk;Lee, Sang-Min;Hwang, Jun-Young;Chung, Suk-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.817-822
    • /
    • 2002
  • Sooting characteristics of counterflow ethylene/propane mixture flames have been experimentally studied to investigate the fuel structure effect on PHM and soot formation. Laser-induced incandescene and laser-induced fluorescene techniques were employed to measure soot volume fraction and polycyclic aromatic hydrocarbon (PAH) concentration, respectively. Importance of $C_{3-}$species on PAH growth as well as the H-abstraction-C$_2$ $H_2$addition (HACA) mechanism has been emphasized, considering that PAH growth rate is greater for with mixed fuel than fer pure fuel flames. It was also confirmed that HACA pathways are the dominant soot growth mechanism. A new PAH growth model including both $C_{2-}$ and $C_{3-}$growth mechanisms is proposed based on the experimental results.

Characteristics of PAH and Soot Formation for Various Fuels in Coflow Diffusion Flame (동축류 확산화염에서 다양한 연료에 따른 PAH 및 매연의 생성특성)

  • Yoon S. S.;Ahn H. N.;Lee S. M.;Chung S. H.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.107-110
    • /
    • 2003
  • Characteristics of PAH and soot formation in coflow diffusion flames of methane, methane, propane, and ethylene have been experimentally studied to investigate the temperature and fuel structure effect on soot formation. PAH and soot images were acquired by applying PAH LIF and LII techniques, respectively and temperature was measured using R-type thermocouple. Direct photographs of soot particles have also been taken by transmission electron microscopy (TEM) through a thermophoretic sampling. Comparison of PAH and soot formation between the aliphatic fuels has shown the importance of fuel structure effect in diffusion flames.

  • PDF

Synergistic Effect of Ethylene-Propane Mixture on Soot Formation in Counterflow Diffusion Flame (대향류 확산 화염에서 에틸렌-프로판 혼합 연료의 매연 생성 상승 효과)

  • Hwang, Jun-Yeong;Jeong, Seok-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 1997.06a
    • /
    • pp.89-102
    • /
    • 1997
  • 대향류 확산 화염의 매연 생성 특성에 대한 실험적 연구가 수행되었으며, 그 결과 에틸렌 ($C_2H_4$)-프로판($C_3H_8$) 혼합 연료의 경우 매연 생성 상승 효과 (synergistic effect)가 관측되었다. 프로판과 에틸렌의 PAH 생성 양상이 상이하게 나타났으며, 소량의 프로판을 에틸렌 확산 화염에 첨가할 경우 순수 연료에 비하여 매연 및 PAH (다중 고리 방향족 탄화수소; polycyclic aromatic hydrocarbon) 생성이 증대되었다. 단조적으로 변화하는 아세틸렌($C_2H_2$) 농도와 단열 화염 온도를 고려할 때, 이러한 결과는 HACA (H-abstraction-$C_2H_2$-addition) 반응만으로는 확산 화염에서의 매연 발생 및 성장을 설명할 수 없음을 의미한다. 수치해석과 실험 결과의 비교로부터 초기 PAH의 생성 과정을 규명하였으며 이 과정에서 C3 화학종의 재결합 반웅이 매우 중요함을 확인할 수 있었다. 또한, 이러한 C3 화학종과 C2 화학종의 상호 보완적인 역할에 의하여 에틸렌-프로판 혼합 연료에서 매연 생성이 증대됨을 밝혔다.

  • PDF

Numerical Analysis for the Detailed Structure and the Soot Formation Mechanism in Counterflow Ethylene-Air Nonpremixed Flame (대향류 에틸렌/공기 비예혼합 화염의 구조 및 Soot 생성 메커니즘 해석)

  • 임효준;김후중;김용모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.40-54
    • /
    • 1999
  • The flame structure and soot formation in the counterflow Ethylene-Air nonpremixed flame are numerically analyzed. The present soot reaction mechanism involves nucleation, surface growth, particle coagulation, and oxidation steps. The gas phase chemistry and the soot nucleation, surface growth reactions are coupled by assuming that the nucleation and soot mass growth has the certain relationship with the concentration of benzene and acetylene. In terms of the centerline velocity and the soot volume fraction, the predicted results are compared with the experimental data. The detailed discussion has been made for the sensitivity of model constants and the deficiencies of the present model. Numerical results indicated that the acetylene addition to the soot surface plays the dominant role in the soot mass growth for the counterflow nonpremixed flame.

  • PDF

Numerical Analysis for the Soot Formation Processes in Acetylene-Air Nonpremixed Turbulent Jet Flame (아세틸렌/공기 비예혼합 난류 제트화염의 Soot 생성에 대한 수치해석)

  • 김후중;김용모;윤명원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.80-89
    • /
    • 2002
  • The flame structure and soot formation in Acetylene-Air nonpremixed jet flame are numerically analyzed. We employed two variable approach to investigate the soot formation and oxidation processes. The present soot reaction mechanism involves nucleation, surface growth, particle coagulation, and oxidation steps. The gas phase chemistry and the soot nucleation, surface growth reactions are coupled by assuming that the nucleation and soot mass growth has the certain relationship with the concentration of pyrene and acetylene. We also employed laminar flamelet model to calculate the thermo-chemical properties and the proper soot source terms from the information of detailed chemical kinetic model. The numerical and physical model used in this study successfully predict the essential features of the combustion processes and soot formation characteristics in the reaction flow field.

Modeling of Non-Equilibrium Kinetics in Gas Generator including Soot Formation (Soot 생성을 고려한 가스발생기의 Kerosene/LOx의 비평형 화학반응 모델링)

  • Yu, Jung-Min;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.150-153
    • /
    • 2006
  • Gas generator should be adopted either fuel rich or oxidizer rich combustion because of the temperature restriction to avoid any possible thermal damages to turbine blade. This study focuses to model the non-equilibrium chemical reaction of kerosene/LOx with detailed kinetics developed by Dagaut using Perfectly stirred reactor(PSR) assumption. To predict more reliable species fraction and other gas properties, Frenklach's soot model was added to Dagaut's detailed kinetics.

  • PDF

A Study on the Co-flow Diffusion Flame Temperature Measurement at Various Fuel Flows Rate Using the Rapid Insertion Technique (급속삽입법을 이용한 연료 유량에 따른 동축류 확산화염에서의 온도 측정에 관한 연구)

  • Han Yongtaek;Lee Kihyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.51-59
    • /
    • 2005
  • Co-flow laminar diffusion flames' temperature has been studied experimentally for ethylene$(C_2H_4)$ using a co-flow burner in order to investigate the characteristics of diffusion flame's temperature distribution. The temperature distributions in the flame were measured by rapid insertion of a R-type thermocouple. The measurement area was divided into three zones. 1st area was expect to created PAH zone, Il nd area was expect to form soot zone, which is known to generate most soot volume fraction, and III rd area was expect to from soot oxidization zone. Also The temperature along the flame y-axis as a fuel quantity was measured. As a results, we have measured temperature neglecting the effect of soot particles attached to the thermocouple junction, which is close to the nozzle and upstream zone has a unstable flow in co-flow diffusion flame and acquires that the flame y-axis temperature has a uniform temperature in the generated soot volume fraction zone(II nd).

Soot and PAH Formation Characteristic of Concentric Co-Flow Diffusion Flames (이중동축류 확산화염에서의 매연 및 PAH 생성 특성)

  • Lee, Won-Nam;Nam, Youn-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.178-185
    • /
    • 2005
  • The synergistic effect of ethylene/propane mixture on soot formation is studied experimentally using a concentric co-flow diffusion burner, which provides the stratified fuel mixture. The soot volume fraction, soot particle diameter, number density and PAH concentrations are measured with various fuel supply configurations and compared to the homogeneously mixed case. When propane is supplied through the inner nozzle, an increase of soot formation is observed. However, when propane is supplied through the outer nozzle, a decrease is observed. The reaction path of PAH's formed from the pyrolysis process of propane is likely to be responsible to the observed differences. When propane is supplied through the outer nozzle, PAH's are formed in the relatively near oxidation region and exposed to the oxidization environment; on the other hand, when propane is supplied through the inner nozzle, PAH's are not likely to be oxidized and thus get involved in soot formation process. The synergistic effect in ethylene/propane diffusion flames is found to be affected not only by the com position of the mixture but also by the way of mixing.