• Title/Summary/Keyword: 다중경로 페이딩 채널

Search Result 341, Processing Time 0.023 seconds

Low Power Parallel Acquisition Scheme for UWB Systems (저전력 병렬탐색기법을 이용한 UWB시스템의 동기 획득)

  • Kim, Sang-In;Cho, Kyoung-Rok
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.1
    • /
    • pp.147-154
    • /
    • 2007
  • In this paper, we propose a new parallel search algorithm to acquire synchronization for UWB(Ultra Wideband) systems that reduces computation of the correlation. The conventional synchronization acquisition algorithms check all the possible signal phases simultaneously using multiple correlators. However it reduces the acquisition time, it makes high power consumption owing to increasing of correlation. The proposed algorithm divides the preamble signal to input the correlator into an m-bit bunch. We check the result of the correlation at first stage of an m-bit bunch data and predict whether it has some synchronization acquisition information or not. Thus, it eliminates the unnecessary operation and save the number of correlation. We evaluate the proposed algorithm under the AWGN and the multi-Path channel model with MATLAB. The proposed parallel search scheme reduces number of the correlation 65% on the AWGN and 20% on the multi-path fading channel.

A Study of Development of Transmission Systems for Next-generation Terrestrial 4K UHD & HD Convergence Broadcasting (차세대 지상파 4K UHD & HD 융합방송을 위한 전송 시스템 개발에 관한 연구)

  • Oh, JongGyu;Won, YongJu;Lee, JinSub;Kim, YongHwan;Paik, JongHo;Kim, JoonTae
    • Journal of Broadcast Engineering
    • /
    • v.19 no.6
    • /
    • pp.767-788
    • /
    • 2014
  • The worldwide transition from analog to digital broadcasting has now been completed and the need to study next generation standards for Ultra High Definition TV (UHDTV) broadcasting, and broadcasting & communication convergence systems is rapidly growing. In particular, high resolution mobile broadcasting services are needed to satisfy recent consumers. Therefore, the development of highly efficient convergence broadcasting systems that provide fixed/mobile broadcasting through a single channel is needed. In this paper, a service scenario and requirements for providing 4K UHD & HD convergence broadcasting services through a terrestrial single channel are analyzed by employing the latest transmission and A/V codec technologies. Optimized transmission parameters for 6 MHz & 8 MHz terrestrial bandwidths are drawn, and receiving performances are measured under Additive White Gaussian Noise (AWGN) and time-varying multipath channels. From the results, in a 6 MHz bandwidth, the reliable receiving of HD layer data can be achieved when the receiver velocity is maximum 140 Km/h and is not achieved when the velocity is over 140 Km/h due to the limit of bandwidth. When the bandwidth is extended to 8 MHz, the reliable receiving of both 4K UHD and HD layer data is achieved under a very fast fading multipath channel.

The Comparison of Filter Performance in UFMC systems (UFMC 시스템에서 필터성능 비교)

  • Lee, Kyuseop;Choi, Ginkyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.89-95
    • /
    • 2017
  • UFMC is known as a candidate for the 5G wireless communication system because it is robust against ICI and better performs in asynchronous situation than OFDM. In the UFMC system, the filtering is performed for each subband so the performance of the filter is very important. The Dolph-Chebyshev filter has been used in conventional UFMC system because of its small out-of-band radiation. However it has distortion in the sub-band and skirt characteristics is not good enough. Therefore, it is necessary to study a new type of UFMC filter which reduces the distortion in the subband and has sharp skirt characteristics. In this paper we analyze the effect of filter frequency response in UFMC system and suggest the wavelet based type of filter that substitutes the Dolph-ChebyShev filter used in the conventional UFMC system. The simulation results show that wavelet filter has better BER performance in multipath fading channels than conventional filters.

Performance of Opportunistic Incremental NOMA Relay System in Fading Channels (페이딩 채널에서 기회전송 증가 NOMA 릴레이 시스템의 성능분석)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.5
    • /
    • pp.69-76
    • /
    • 2016
  • In this paper, we investigate the system performance of a cooperative relaying system of Non-orthogonal multiple access (NOMA) with successive interference cancellation (SIC), which is considered promising application in fifth generation (5G) cellular networks. Previous studies have focused on the selected relays, however we include the maxmin relay selection and derive analytical outage probability of opportunistic incremental relaying systems. For the realistic mobile environment, the distributions of relays are modeled as a homogeneous Poisson point process (PPP). And maximal ratio combining (MRC) is adapted to improve the system performance at the destination node. Analytical results demonstrate the outage probability improves with the near/far user power ratio, and the cooperative relaying scheme can achieve low outage probability in comparison to the no relaying scheme. It is also conformed that the increase of the intensity of PPP cause higher gains of the spacial diversity and hence the performance improves.

Performance of SIR-based power control using unused OVSF codes for WCDMA reverse link receiver (미사용 OVSF 부호를 이용한 WCDMA 역방향 링크 수신기의 SIR 기반 전력제어 성능 분석)

  • 이영용;박수진;안재민;임민중;정성현;최형진
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.7
    • /
    • pp.282-292
    • /
    • 2003
  • In this paper, we evaluate the performance of WCDMA reverse link receiver system with closed loop fast transmit power control (TPC). For fast power control, SIR must be measured precisely. We propose a new SIR measurement algorithm having a simple structure. The proposed algorithm uses unused OVSF code for interference power evaluation. The proposed SIR measurement algorithm is compared to the conventional SIR measurement algorithm in Ref.$^{[1]}$ under closed loop fast TPC. We adopted WMSA channel estimation filter with Κ=2 for mobile radio channel estimation and considered one slot TPC delay. Extensive computer simulation results show that the proposed algorithm using unused OVSF code reduces the required Ε$_{b}$$_{0}$ at the BER of 10$^{-3}$ up to 0.9㏈ and has an improved TPC error performance compared to the conventional algorithm.

Link Scheduling Method Based on CAZAC Sequence for Device-to-Device Communication (D2D 통신 시스템을 위한 CAZAC 시퀀스 기반 링크 스케줄링 기법)

  • Kang, Wipil;Hwang, Won-Jun;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.4
    • /
    • pp.325-336
    • /
    • 2013
  • FlashLinQ, one of the typical D2D communication systems developed by Qualcomm, considers a single-tone communication based distributed channel-aware link scheduling method to realize the link scheduling process with low control overheads. However, considering the frequency selective fading effect of practical multi-path channel, the single-tone based SIR estimation causes a critical scheduling error problem because the received single-tone signal has quite different channel gain at each sub-carrier location. In order to overcome this problem, we propose a novel link scheduling method based on CAZAC (Constant Amplitude Zero Auto-Correlation) sequence for D2D communication system. In the proposed method, each link has a unique offset value set for the generation of CAZAC sequences. CAZAC sequences with the cyclic offsets are transmitted using multiple sub-blocks in the entire bandwidth, and then each device can obtain nearly full-band SIR using a good cyclic cross-correlation property of CAZAC sequence.

The Performance Evaluation and Analysis of Next Generation Wireless LAN with OFDM (OFDM을 적용한 차세대 무선 LAN의 성능 평가 및 분석)

  • Han, Kyung-Su;Youn, Hee-Sang
    • Journal of Advanced Navigation Technology
    • /
    • v.6 no.1
    • /
    • pp.37-43
    • /
    • 2002
  • This paper describes the performance evaluation and analysis of Wireless Local Area Network (W-LAN) in the 5 GHz ISM-band in compliance with IEEE 802.11a. At present, most W-LAN products are based on 2.4 GHz band, but low speed (11Mbps) has the limitation to serve systems demanding high-speed data transmission. To solve this problem, it is necessary to design next generation W-LAN system with 54Mbps in the 5GHz. It is sure that implementation of next generation W-LAN will bring competitive advantages. In particular, it will support telecommunications for high-speed mobile environments as well as for fixed places such as a school zone, a lecture room, a hospital and other premises. A few simulation methods are applied to more accurate and reliable performance analysis of next generation W-LAN. To verify if continuous data service is supported for a high-speed mobile notebook, multi-path fading channels between wireless Access Point (AP) and wireless Network Interface Card (NIC) are modeled. In addition, low interference is analyzed via convolutional codes and Orthogonal Frequency-Division Multiplexing (OFDM). Also, to obtain reliable Bit Error Rate (BER), a single tap Least Mean Square (LMS) equalizer is applied. Given the above simulation, next generation W-LAN is an ideal solution for continuous data transmission in high-speed mobile environments.

  • PDF

The viterbi decoder implementation with efficient structure for real-time Coded Orthogonal Frequency Division Multiplexing (실시간 COFDM시스템을 위한 효율적인 구조를 갖는 비터비 디코더 설계)

  • Hwang Jong-Hee;Lee Seung-Yerl;Kim Dong-Sun;Chung Duck-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.2 s.332
    • /
    • pp.61-74
    • /
    • 2005
  • Digital Multimedia Broadcasting(DMB) is a reliable multi-service system for reception by mobile and portable receivers. DMB system allows interference-free reception under the conditions of multipath propagation and transmission errors using COFDM modulation scheme, simultaneously, needs powerful channel error's correction ability. Viterbi Decoder for DMB receiver uses punctured convolutional code and needs lots of computations for real-time operation. So, it is desired to design a high speed and low-power hardware scheme for Viterbi decoder. This paper proposes a combined add-compare-select(ACS) and path metric normalization(PMN) unit for computation power. The proposed PMN architecture reduces the problem of the critical path by applying fixed value for selection algorithm due to the comparison tree which has a weak point from structure with the high-speed operation. The proposed ACS uses the decomposition and the pre-computation technique for reducing the complicated degree of the adder, the comparator and multiplexer. According to a simulation result, reduction of area $3.78\%$, power consumption $12.22\%$, maximum gate delay $23.80\%$ occurred from punctured viterbi decoder for DMB system.

Performance Enhancement of Algorithms based on Error Distributions under Impulsive Noise (충격성 잡음하에서 오차 분포에 기반한 알고리듬의 성능향상)

  • Kim, Namyong;Lee, Gyoo-yeong
    • Journal of Internet Computing and Services
    • /
    • v.19 no.3
    • /
    • pp.49-56
    • /
    • 2018
  • Euclidean distance (ED) between error distribution and Dirac delta function has been used as an efficient performance criterion in impulsive noise environmentsdue to the outlier-cutting effect of Gaussian kernel for error signal. The gradient of ED for its minimization has two components; $A_k$ for kernel function of error pairs and the other $B_k$ for kernel function of errors. In this paper, it is analyzed that the first component is to govern gathering close together error samples, and the other one $B_k$ is to conduct error-sample concentration on zero. Based upon this analysis, it is proposed to normalize $A_k$ and $B_k$ with power of inputs which are modified by kernelled error pairs or errors for the purpose of reinforcing their roles of narrowing error-gap and drawing error samples to zero. Through comparison of fluctuation of steady state MSE and value of minimum MSE in the results of simulation of multipath equalization under impulsive noise, their roles and efficiency of the proposed normalization method are verified.

Performance Analysis of Noncoherent OOK UWB Transceiver for LR-WPAN (저속 WPAN용 비동기 OOK 방식 UWB 송수신기 성능 분석)

  • Ki Myoungoh;Choi Sungsoo;Oh Hui-Myoung;Kim Kwan-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.11A
    • /
    • pp.1027-1034
    • /
    • 2005
  • IEEE802.15.4a, which is started to realize the PHY layer including high precision ranging/positioning and low data rate communication functions, requires a simple and low power consumable transceiver architecture. To satisfy this requirements, the simple noncoherent on-off keying (OOK) UWB transceiver with the parallel energy window banks (PEWB) giving high precision signal processing interface is proposed. The flexibility of the proposed system in multipath fading channel environments is acquired with the pulse and bit repetition method. To analyze the bit error rate (BER) performance of this proposed system, a noise model in receiver is derived with commonly used random variable distribution, chi-square. BER of $10^{-5}$ under the line-of-sight (LOS) residential channel is achieved with the integration time of 32 ns and signal to noise ratio (SNR) of 15.3 dB. For the non-line-of-sight (NLOS) outdoor channel, the integration time of 72 ns and SNR of 16.2 dB are needed. The integrated energy to total received energy (IRR) for the best BER performance is about $86\%$.