• Title/Summary/Keyword: 다이폴 안테나

Search Result 308, Processing Time 0.023 seconds

A Study on Phenomena of Sea Propagation Considering Surface Wave (표면파 성분을 고려한 해면전파 현상에 관한 연구)

  • 서덕수;이민수
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.5
    • /
    • pp.376-383
    • /
    • 1996
  • In general, the electromagnetic field analysis of a vertical dipole mainly deals with the space. wave. But when only the space wave is considered, as a receiving point is close to the surface of medium, the receiving electric field strength is rapidly decreased. In this paper, to solve this problem, we considered both the surface wave and the space wave contribution. When the vector potential is used with the angular spectrum transformation method, the space wave and the surface wave are included in the final electric field expression. By using this final electric field expression, the effect of the surface wave is analyzed through simulations and the factors having effect on a propagation phenomenon of sea surface are studied in detail. Also, the justification of the theoretical formula was proved by comparing theoretical values with measuring ones at 880. 2MHz which is the frequency of mobile communication.

  • PDF

A Study on the Integration of Zigzag Dipole Antennas (지그재그 다이폴 안테나의 집적화에 관한 연구)

  • Jeon, Hoo-Dong;Jun, Sang-Jae;Song, Chang-Hyun;Ha, Seok-Young;Lee, Seung-Hyuk;Lee, Young-Soon;Park, Eui-Joon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.329-334
    • /
    • 2005
  • In this paper, the characteristics of linealy bent wire antennas are first analyzed for shortening straight wire antennas. The results are appropriately applied to the design of the integrated zigzag dipole antenna. Since the integration give rise to discontinuities due to line width, the integrated parasitics are properly attached to both sides of substrate for improving the antenna gain and return loss. The design results are verified with experiments.

  • PDF

A Study on the Characteristics of a Rectifying Circuit for Wireless Power Transmission using a Passive RAID System (수동형 RFID 시스템을 이용한 무선 전력 전송을 위한 정류회로 특성 연구)

  • Park, Cheol-Young;Yeo, Jun-Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.4
    • /
    • pp.1-7
    • /
    • 2011
  • In this paper, we design rectifing circuits at 910MHz, which is used for passive RFID system, for wireless power transmission system by using two types of schottkey diodes HSMS_2822 and HSMS 2852, and the RF-DC conversion efficiencies for the curcuits are compared and analyzed in terms of input power and load resistance. When the input power is -20 to 17dBm, the conversion efficiency for HSMS_2852 is larger than in case of HSMS_2822. The output voltage and current at the load of the fabricated rectifying circuit are measured through a dipole antenna when input power is transmitted by a RFID reader and the diatance varies. The measured ouput volatge and current for the distance of 50cm are 2.5V and 5.75mA.

High resolution groud penetrating image radar using an ultra wideband (UWB) impulse waveform (초광대역 임펄스를 이용한 고해상도 지반탐사 이미지 레이더)

  • Park Young-Jin;Kim Kwan-Ho;Lee Won-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.11
    • /
    • pp.101-106
    • /
    • 2005
  • A ground penetrating image radar (GPR) using an ultra wideband (UWB)impulse waveform is developed for non destructive detection of metallic pipelines buried under the ground. Dielectric constant of test field is measured and then a GPR system is designed for better detection up to 1 meter deep. By considering total path loss, volume of complete system, and resolution, upper and lower frequencies are chosen. First, a UWB impulse for the frequency bandwidth of the impulse is chosen with rising time less than 1 ns, and then compact planar UWB dipole antenna suitable for frequency bandwidth of a UWB impulse is designed. Also, to receive reflected signals, a digital storage oscilloscope is used. For measurement, a monostatic technique and a migration technique are used. For visualizing underground targets, simple image processing techniques of A-scan removal and B-scan average removal are applied. The prototype of the system is tested on a test field in wet clay soil and it is shown that the developed system has a good ability in detecting underground metal objects, even small targets of several centimeters.

Shielding Effectiveness Analysis of the Digital Module Storage Cabinet for Nuclear Power Plants According to the Internal Structure and the Angle of EM wave Incidence (내부구조와 전파 입사각에 따른 원전용 디지털 모듈 보관 캐비닛의 차폐효과 분석)

  • Youn, Sang-Woon;Jang, Do-Young;Choo, Ho-Sung;Kim, Young-Mi;Lee, Jun-Yong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • In this paper, the cabinet shielding effectiveness (SE) including digital modules for nuclear power plants is analyzed depending on the internal structure and electromagnetic (EM) wave incidence angle. To analyze the SE, the cabinet and modules are modeled using the FEKO EM simulation tool. The SE is then obtained by comparing the electric field with and without the cabinet. In addition, the cabinet SE is observed by changing various conditions such as the spacing of each digital module, incidence angle, and the polarization of the EM wave at the 2.4 G[Hz frequency. To verify the results, the dipole antenna for SE measurements is fabricated, and the SE is measured in a semi-anechoic chamber. The result demonstrates that the SE by the cabinet structure can be expected to be higher when the polarization of the incident EM wave is horizontal to the ground and the distance between the digital modules is wide.

Design of a Frequency Selective Surface Using DSRRs (DSRR을 이용한 주파수 선택적 표면 설계)

  • Woo, Dae-Woong;Kim, Jae-Hee;Ji, Jeong-Keun;Kim, Gi-Ho;Seong, Won-Mo;Park, Wee-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.2
    • /
    • pp.194-201
    • /
    • 2010
  • We propose a frequency selective surface(FSS) using double split ring resonators(DSRRs) for isolation enhancement between CDMA and RFID. The structure consists of an outer SRR and an inner SRR, and the gaps are formed in the same direction. By properly adjusting the gap and line width, the resonant frequency and skirt characteristics can be adjusted without varying the unit cell size. The proposed structure has a different field distribution from that of an ordinary SRR for magneto-dielectric materials. One layer consists of $9{\times}9$ unit cells and the other layer was separated by 50 mm. To validate the simulation results, we fabricated the patch antenna and the FSSs, and the measured results show a good agreement with the simulated ones. The electrical size of the unit cell is $0.110\;{\lambda}{\times}0.110\;{\lambda}{\times}0.002\;{\lambda}$, and the size of the two layer FSS is $1.058\;{\lambda}{\times}1.058\;{\lambda}{\times}0.153\;{\lambda}$. The two layer FSS maintain gain in CDMA frequency and has 6.9 dB reduced gain in RFID frequency.

A RF Microstrip Balun Using a Wilkinson Divider and 3-dB Quadrature Couplers (월킨슨 분배기와 90도 위상차 분배기를 이용한 RF 마이크로스트립 발룬)

  • Park Ung-Hee;Lim Jong-Sik;Kim Joung-Myoun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.3 s.94
    • /
    • pp.246-252
    • /
    • 2005
  • A RF microstrip balun having low transmission loss for the balanced receiving dipole antenna is designed and fabricated using a three-section Wilkinson divider and two 3-dB quadrature couplers. It considers two types of the three-section Wilkinson dividers, the Cohn's optimum three-section structure and the miniaturized three-section structure, for wideband power splitting. Also, two 3-dB quadrature couplers for 180 degrees of phase difference adopt a twist-wire coaxial cable. The fabricated first balun having the Cohn's optimum three-section Wilkinson divider has 0.5 dB of transmission loss, $\pm$0.2 dB of amplitude imbalance, and 180$\pm$2.3 degrees of phase imbalance over 400 to 1000 MHz by measurement. The second one using the miniaturized three-section Wilkinson divider shows 1.0 dB of transmission loss, $\pm$0.7 dB of amplitude imbalance, and 180$\pm$8.8 degrees of phase imbalance over the same frequency band.

Analysis of Acoustic Reflectors for SAW Temperature Sensor and Wireless Measurement of Temperature (SAW 온도센서용 음향 반사판 분석 및 무선 온도 측정)

  • Kim, Ki-Bok;Kim, Seong-Hoon;Jeong, Jae-Kee;Shin, Beom-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.1
    • /
    • pp.54-62
    • /
    • 2013
  • In this study, a wireless and non-power SAW (surface acoustic wave) temperature sensor was developed. The single inter-digital transducer (IDT) of SAW temperature sensor of which resonance frequency is 434 MHz was fabricated on $128^{\circ}$ rot-X $LiNbO_3$ piezoelectric substrate by semiconductor processing technology. To find optimal acoustic reflector for SAW temperature sensor, various kinds of acoustic reflectors were fabricated and their reflection characteristics were analyzed. The IDT type acoustic reflector showed better reflection characteristic than other reflectors. The wireless temperature sensing system consisting of SAW temperature sensor with dipole antenna and a microprocessor based control circuit with dipole antenna for transmitting signal to activate the SAW temperature sensor and receiving the signal from SAW temperature sensor was developed. The result with wireless SAW temperature sensing system showed that the frequency of SAW temperature sensor was linearly decreased with the increase of temperature in the range of 40 to $80^{\circ}C$ and the developed wireless SAW temperature sensing system showed the excellent performance with the coefficient of determination of 0.99.