• Title/Summary/Keyword: 다이캐스팅

Search Result 186, Processing Time 0.022 seconds

Strength Analysis of Die-cast Aluminum-alloy Brake Pedals for use in Lightweight Cars (자동차 경량화를 위한 다이캐스팅용 알루미늄합금 브레이크 페달의 강도해석)

  • Cho, Seunghyun;Jang, Junyoung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.2
    • /
    • pp.138-142
    • /
    • 2016
  • In this study, a strength analysis was performed to assess die-cast aluminum alloy brake pedals as an improved alternative to wrought alloys. Aluminum brake pedal shapes are considered to be suitable for the die-casting process. The strength criterion of Volvo trucks was used as the criterion for the pedal strength. The results of this analysis showed that the frame thickness of the aluminum brake pedal must be increased from 12 mm to 18 mm to have a strength superior to that of a steel brake pedal. Additionally, the stress and weight of the aluminum brake pedal were found to be approximately 24% and 26% lower than those of the steel brake pedal, respectively. Mounting tests and strength assessments verified that the proposed die-cast aluminum alloy brake pedal demonstrated sufficient strength.

A prediction of mold temperature distribution and lifetime with different spray process of mold release agent in high pressure diecasting mold using computer simulation (컴퓨터 시뮬레이션을 이용한 고압다이캐스팅 금형의 이형제 분사공정에 따른 금형온도분포 및 금형수명 예측)

  • Kim, Dong-Hyun;Yoon, Sang-Il;Chang, Dae-Jung
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.49-53
    • /
    • 2019
  • The temperature distribution and lifetime of molds were predicted by computer simulation analysis with various spraying and blowing process of high pressure die casting. After varying the spraying angle and time, the mold temperature, heat exchange and mold life were predicted. As the spraying angle increases, the maximum temperature of the mold decreases, which is because the spraying area increases and the heat exchange with the mold increases. Heat exchange occurs more actively in the blowing process than in the spraying process. This is because the cooling is not performed due to the steam generation. When the spraying angle is 50 degree, the minimum life of the mold is analyzed 200 times. After adjusting the blowing time from 5s to 3s, the minimum lifetime of the mold has been increased almost twice.

Corrosion Characteristics of Aluminum Die Casting Alloys with Different Scrap Charge Rate (스크랩 장입 비율에 따른 다이캐스팅용 알루미늄 합금의 부식 특성)

  • Kim, Jun-Ho;Lee, Seung-Hyo
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.6
    • /
    • pp.322-329
    • /
    • 2020
  • The utilization of aluminum scrap is a subject of great importance in terms of reducing energy consumption and environmental protection. However, aluminum scrap contains impurities, which can degrade the properties of aluminum alloy, especially corrosion resistance. This study examines the effect of scrap charge rate of aluminum alloys about microstructures and corrosion characteristics. According to the metallographic examinations, Mg2Si tended to become coarser and its uniformity was decreased by increasing aluminum scrap charge rate. The immersion test exhibited corrosion progressed through the eutectic areas due to micro-galvanic interactions. Electrochemical measurements revealed that excess aluminum scrap could reduce the intergranular corrosion resistance of aluminum alloys. Results showed that the scrap charge rate is important factor in the design of corrosion resistance of aluminum die casting alloys.

Difference in Solidification Process between Al-Mg Alloy and Al-Si Alloy in Die-Casting (Al-Mg계 합금과 Al-Si계 합금의 다이캐스팅 응고과정의 차이)

  • Choi, Se-Weon;Kim, Young-Chan;Cho, Jae-Ik;Kang, Chang-Seog;Hong, Sung-Kil
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.82-85
    • /
    • 2012
  • The effect of the alloy systems Al-Mg alloy and Al-Si alloy in this study on the characteristics of die-casting were investigated using solidification simulation software (MAGMAsoft). Generally, it is well known that the casting characteristics of Al-Mg based alloys, such as the fluidity, feedability and die soldering behaviors, are inferior to those of Al-Si based alloys. However, the simulation results of this study showed that the filling pattern behaviors of both the Al-Mg and Al-Si alloys were found to be very similar, whereas the Al-Mg alloy had higher residual stress and greater distortion as generated due to solidification with a larger amount of volumetric shrinkage compared to the Al-Si alloy. The Al-Mg alloy exhibited very high relative numbers of stress-concentrated regions, especially near the rib areas. Owing to the residual stress and distortion, defects were evident in the Al-Mg alloy in the areas predicted by the simulation. However, there were no visible defects observed in the Al-Si alloy. This suggests that an adequate die temperature and casting process optimization are necessary to control and minimize defects when die casting the Al-Mg alloy. A Tatur test was conducted to observe the shrinkage characteristics of the aluminum alloys. The result showed that hot tearing or hot cracking occurred during the solidification of the Al-Mg alloy due to the large amount of shrinkage.

Analysis of Charging Phenomenon of 2-Cavity Die Casting for Automobile's Valve Housing (자동차 VALVE HOUSING용 2-CAVITY 다이캐스팅의 충전 현상 분석)

  • Lee, Jong-Hyung;Yoon, Jong-Cheul;Yoo, Duck-Sang;Lee, Chang-Heon;Ha, Hong-Bae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.1
    • /
    • pp.61-66
    • /
    • 2006
  • In perspective of saving natural resource and energy, today's automobiles are in process of regenerating by smaller and lighter. In order to achieve the sufficiency on the consumption of the fuel, new mechanism and new assembly are required. Therefore the expectations on the new materials are very high. Especially, AI materials are widely used to reduce the weight. AI that is used in automobiles is mostly casting material, and according to the innovation of technique is in rapid development. AI Die casting is an important field as today's trend of lightweight on automobiles. One of the parts in steering system, Valve Housing plays a role of reduce the operating effort of drivers. Unfortunately, the Valve Housing which is widely reliable to the most automobiles are not developed at this moment in our automobile industry. Therefore, they are produced by casting method which cost three times or even more expensive in production. If Valve Housing, which is a part of steering system is produced by Gravity Casting, the space that manufacturing equipment will be increased, and more time and workers would be brought into service. For such reason, Die Casting would replace Gravity Casting in order to minimize cost of time, manpower, and working space.

  • PDF

Effect of Casting Thickness and Plunger Velocity on Porosity in Al Plate Diecasting (Al 박육 다이캐스팅 주물에서 기포결함에 미치는 주물두께, 사출속도의 영향)

  • Kang, Ho-Jeong;Park, Jin-Young;Kim, Eok-Soo;Cho, Kyung-Mox;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.35 no.4
    • /
    • pp.80-87
    • /
    • 2015
  • The Al die casting process has been widely used in the manufacturing of automotive parts when the process requires near-net shape casting and a high productive rate. However, porosity arises in the casting process, and this hampers the wider use of this method for the creation of high-durability automotive components. The porosity can be controlled by the shot condition, but, it is critical to set the shot condition in the sleeve, and it remains difficult to optimize the shot condition to avoid air entrapment efficiently. In this study, the 4.5 mm, 2.0 mm plate die castings were fabricated under various shot conditions, such as plunger velocities of 0.7 m/s ~ 3.0 m/s and fast shot set points of the cavity of -25%, 0%, 25%, and 50%. The mold filling behavior of Al melts in the cavity was analyzed by a numerical method. Also, according to the shot conditions, the results of numerical analyses were compared to those of die-casting experiments. The porosity levels of the plate castings were analyzed by X-ray CT images and by density and microstructural analyses. The effects of the porosity on the mechanical properties were analyzed by tensile tests and hardness tests. The simulation results are in good general agreements with the die-casting experimental results. When plunger velocity and fast shot set point are 1.0 m/s and cavity 25% position, castings had optimum condition for good mechanical properties and a low level of porosity.

Optimization of Solid Solution Treatment Process for a High Pressure Die Casting Al-10Si-0.3Mg-0.6Mn alloy to avoid Blistering and Improve the Strength of the Alloy (고압 다이캐스팅으로 제조된 Al-10Si-0.3Mg-0.6Mn 합금에서 blister 발생과 강도의 균형을 고려한 최적 열처리 공정 설계)

  • Kim, Soo-Bae;Cho, Young-Hee;Jo, Min-Su;Lee, Jung-Moo
    • Journal of Korea Foundry Society
    • /
    • v.40 no.3
    • /
    • pp.66-75
    • /
    • 2020
  • The aim of this study was to optimize a solid solution treatment for a high pressure die casting Al-10Si-0.3Mg-0.6Mn alloy to avoid blistering and to improve the strength of the alloy. To achieve this goal, the number density of the blisters and the strength of the alloy under various solid solution treatment (SST) conditions were evaluated. The SST was performed at 470, 490, 510 and 530℃ for 20, 60, 120, 240 and 480 min on the alloy. The number density of the blisters increased with the increasing temperature and time of the SST and the defect area fraction. The yield strength of the alloy after the T6 heat treatment increased with the increasing SST temperature and time. Based on the results, it is suggested that SST should be performed at 510℃ within 60 min. or at 470 and 490℃ within 240 min. to avoid blistering and to improve the strength.

Microstructural and Mechanical Characteristics of Al-Si-Cu Die Casting Alloy for Engine Mount Bracket (엔진 마운트 브라켓용 다이캐스팅 Al-Si-Cu 합금의 미세조직과 기계적 특성)

  • Chyun, In-Bum;Hong, Seung-Pyo;Kim, Chung-Seok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.6
    • /
    • pp.281-287
    • /
    • 2014
  • Microstructural and mechanical characteristics of Al-6Si-2Cu alloy for engine mount bracket prepared by gravity casting (as-cast) and die-casting (as-diecast) process have been investigated. For the microstructural characterization, the inductively coupled plasma mass spectrometry (ICP-MS), optical microscope (OM), scanning electron microscope (SEM) and electron probe microanalysis (EPMA) analyses are conducted. For the intermetallic phases, the X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) are also conducted with quantitative and qualitative analysis. Micro Vickers hardness and static tensile test are achieved in order to measure mechanical properties of alloys. Secondary dendrite arm spacing (SDAS) of as-cast and as-diecast show 37um and 18um, respectively. A large amount of coarsen eutectic Si, $Al_2Cu$ intermetallic phase and Fe-rich phases are identified in the Al-6Si-2Cu alloy. Mechanical properties of gravity casting alloy are much higher than those of die-casting alloy. Especially, yield strength and elongation of gravity casting alloy show 2 times higher than die-casting alloy. After shot peening, shot peening refined the surface grains and Si particles of the alloys by plastic deformation. The surface hardness value shows that shot peening alloy has higher value than unpeening alloy.

Mechanical Properties of 0.25-0.65wt% CaO added AM60B Eco-Mg Diecastings at room and Elevated Temperatures (0.25-0.65wt% CaO 첨가 AM60B Eco-Mg 다이캐스팅 부품의 상온 및 고온 기계적 특성)

  • Seo, Jung-Ho;Kim, Shae-K.
    • Journal of Korea Foundry Society
    • /
    • v.31 no.1
    • /
    • pp.11-17
    • /
    • 2011
  • The effect of CaO addition to AM60B Mg alloy on tensile properties has been investigated, with focus on strength and ductility at room and elevated temperatures. The 0.25-0.65wt% CaO added AM60B Eco-Mg diecastings were prepared by high pressure die casting using Buhler 1,450-ton cold chamber machine without $SF_6$ and $SO_2$ gases. The microstructures and tensile properties of each alloy were tested. The results show that the grains of AM60B are refined and the mechanical properties increase with CaO addition at room temperature. The improvement of strength and ductility is prominent at 0.45-0.55wt% CaO addition. Also, improved mechanical properties are maintained at elevated temperature of $150^{\circ}C$. CaO addition results in $Al_2Ca$ phase formation mostly on the grain boundaries. This phase leads to the refinement of grain structures and improvement of ductility as well as strength. The suppression of ${\beta}-Mg_{17}Al_{12}$ phase as well as the decrease of fracture surface porosity and other casting defects caused by melt cleanliness also contribute to the enhancement of mechanical properties of AM60B Eco-Mg at room and elevated temperature.

A Study on the Die-casting Process of AM50 Magnesium Alloy (AM50 마그네슘 합금의 다이캐스팅 공정에 관한 연구)

  • Kim, Soon-Kook;Jang, Chang-Woo;Lee, Jun-Hee;Jung, Chan-Hoi;Seo, Yong-Gwon;Kang, Choong-Gil
    • Korean Journal of Materials Research
    • /
    • v.16 no.8
    • /
    • pp.516-523
    • /
    • 2006
  • In recent years, Magnesium (Mg) and its alloys have become a center of special interest in the automobile industry. Due to their high specific mechanical properties, they offer a significant weight saving potential in modern vehicle constructions. Most Mg alloys show very good machinability and processability, and even the most complicated die-casting parts can be easily produced. The die casting process is a fast production method capable of a high degree of automation for which certain Mg alloys are ideally suited. In this study, step-dies and flowability tests for AM50 were performed by die-casting process according to various combination of casting pressure and plunger velocity. We were discussed to velocity effect of forming conditions followed by results of microstructure, FESEM-EDX, hardness and tensile strength. Experimental results represented that the conditions of complete filling measured die-casting pressure 400 bar, 1st plunger velocity 1.0 m/s and 2nd plunger velocity 6.0 m/s. The increasing of 2nd plunger velocity 4.0 to 7.0 m/s decreased average grain size of $\alpha$ phase and pore. It was due to rapid filling of molten metal, increasing of cooling rate and pressure followed by increased 2nd plunger velocity. The pressure should maintain until complete solidification to make castings of good quality, however, the cracks were appeared at pressure 800bar over.