• Title/Summary/Keyword: 다변측정감시시스템

Search Result 16, Processing Time 0.017 seconds

Performance analysis for Ground Position Accuracy Test of MLAT (MLAT 지상 위치정확도 시험에 대한 성능 분석)

  • Koo, Bon-soo;Jang, Jae-won;Kim, Woo-riul;Kim, Tae-sik
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.4
    • /
    • pp.325-331
    • /
    • 2017
  • As a GPS stability problem arises, MLAT system is spotlighted as an alternative technology of ADS-B. MLAT system has a high position accuracy as much as ADS-B. Also, MLAT receives the mode A,C,S, and 1090ES(ADS-B) signals from the mounted aircraft transponder. MLAT receives signals from several receiver units and calculates aircraft positions. MLAT has ADS-B level positioning accurarcy using GPS and can calculate the position information with objects independently. According to global environment changes, Local area multiltilateration(LAM) surveillance system is under development for moving vehicles and aircraft detection in airport. These are still under testing in Tae-an Airfield. In the paper, we analyzed the performance by comparing the calculated position data from MLAT to RTK. In order to confirm the position accuracy of MLAT and the deviation of position data between fixed target and moving target on the ground during the field test in Tae-an Airfield.

Hyperbolic Location Estimation of Aircraft with Motion in a Plane (평면 비행중인 항공기의 쌍곡선 위치 추정 연구)

  • Jo, Sanghoon;Kang, Ja-Young
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.2
    • /
    • pp.33-39
    • /
    • 2013
  • Multilateration(MLAT) may complement secondary surveillance radar and also act as a real-time backup for the ADS-B system. This System is using time difference of arrival (TDOA) and based on triangulation principle. Each TDOA measurement defines a hyperbola describing possible aircraft locations. The accuracy in MLAT system depends on the positional relationship of the receiver and aircraft. There are various algorithms to localize aircraft based on TOA estimation. In this paper, we use least square method and extended Kalman filter and compare their results. Study results show that the extend Kalman filter provides a better performance than the least square method.

An Efficient Information Fusion Method for Air Surveillance Systems (항공감시시스템을 위한 효율적인 정보융합 기법)

  • Cho, Taehwan;Oh, Semyoung;Lee, Gil-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.3
    • /
    • pp.203-209
    • /
    • 2016
  • Among the various fields in the communications, navigation, and surveillance/air traffic management (CNS/ATM) scheme, the surveillance field, which includes an automatic dependent surveillance - broadcast (ADS-B) system and a multilateration (MLAT) system, is implemented using satellite and digital communications technology. These systems provide better performance than radar, but still incur position error. To reduce the error, we propose an efficient information fusion method called the reweighted convex combination method for ADS-B and MLAT systems. The reweighted convex combination method improves aircraft tracking performance compared to the original convex combination method by readjusting the weights given to these systems. In this paper, we prove that the reweighted convex combination method always provides better performance than the original convex combination method. Performance from the fusion of ADS-B and MLAT improves an average of 51.51% when compared to the original data.

A Study on Resolving the Radar Blind Sector in Jeju region (제주지역 레이더 음영지역 해소에 관한 연구)

  • Moon, Woo-Choon;Jung, Hyun-Tae;Kim, Bo Young
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.4
    • /
    • pp.12-21
    • /
    • 2015
  • Due to the influence of Han-la Mountain which is located at the center of Jeju Island, a radar blind sector has been appearing in the south-east, low-altitude area of Jeju Island. Thus, the region is perilous for aircraft using surveillance in this area with the existing radar equipment that is currently available. In addition, as the popularity for domestic leisure aviation is on the rise, the safety in low-altitude area should be guaranteed. Where not only IFR flights but also VFR flights are mainly used. Therefore, immediate measures to the present state of radar blind sector in Jeju Island should be taken into serious account. Regarding the circumstances, this study's purpose is to help secure the aviation safety in Jeju region by analyzing the current air traffic surveillance system in Jeju Island and comprehending its vulnerable factors. Moreover, this study compares secondary radar surveillance system, ADS-B and MLAT(Multilateration) system with factors based on the guidance materials from ICAO Asia and Pacific region office to suggests an adequate surveillance technology considering the regional characteristics of Jeju.

Designing and Realizing the Ground Station Receiver Low Noise Amplifier of the Next-Generation Aeronautical Surveillance System (차세대 항공 감시시스템(ADS-BES) 지상국 수신기 저잡음 증폭기 설계 및 구현)

  • Cho, Ju-Yong;Yoon, Jun-Chul;Park, Chan-Sub;Park, Hyo-Dal;Kang, Suk-Youb
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2273-2280
    • /
    • 2013
  • This article introduces the next-generation air surveillance system and investigates how to design of front-end low noise amplifier of the ground station receiver. In consideration of the international standard documentation and the performance of existing products, the study conducts the link budget on the entire system so that it can be competitive in terms of receive sensitivity or reliability. To obtain a proper low noise amplifier, standards of design are decided so that such factors as gain, gain flatness, and reflective loss can be optimal. In its design, the bias circuit appropriate for the characteristics of low power, low noise, or high gain was built, and according to the results of the simulation conducted after the optimal design, its gain was 16.24dB, noise factor was 0.36dB, input-output reflective loss was -18dB and -28dB each, and frequency stability was 1.11. According to the results measured after the design, its gain was 17dB, noise factor was 0.51dB, gain flatness was 0.23dB, and input-output reflective loss was -18.28dB and -24.50dB each, so the results gained were suitable for building the overall system.

Plant-wide On-line Monitoring and Diagnosis Based on Hierarchical Decomposition and Principal Component Analysis (계층적 분해 방법과 PCA를 이용한 공장규모 실시간 감시 및 진단)

  • Cho Hyun-Woo;Han Chong-hun
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.27-32
    • /
    • 1997
  • Continual monitoring of abnormal operating conditions i a key issue in maintaining high product quality and safe operation, since the undetected process abnormality may lead to the undesirable operations, finally producing low quality products, or breakdown of equipment. The statistical projection method recently highlighted has the advantage of easily building reference model with the historical measurement data in the statistically in-control state and not requiring any detailed mathematical model or knowledge-base of process. As the complexity of process increases, however, we have more measurement variables and recycle streams. This situation may not only result in the frequent occurrence of process Perturbation, but make it difficult to pinpoint trouble-making causes or at most assignable source unit due to the confusing candidates. Consequently, an ad hoc skill to monitor and diagnose in plat-wide scale is needed. In this paper, we propose a hierarchical plant-wide monitoring methodology based on hierarchical decomposition and principal component analysis for handling the complexity and interactions among process units. This have the effect of preventing special events in a specific sub-block from propagating to other sub-blocks or at least delaying the transfer of undesired state, and so make it possible to quickly detect and diagnose the process malfunctions. To prove the performance of the proposed methodology, we simulate the Tennessee Eastman benchmark process which is operated continuously with 41 measurement variables of five major units. Simulation results have shown that the proposed methodology offers a fast and reliable monitoring and diagnosis for a large scale chemical plant.

  • PDF