• Title/Summary/Keyword: 다변수 시스템

Search Result 256, Processing Time 0.033 seconds

Adaptation method of multivariate fuzzy decision tree (다변량 퍼지 의사결정트리의 적응 기법)

  • Moon-Jin Jeon
    • Annual Conference of KIPS
    • /
    • 2008.11a
    • /
    • pp.17-18
    • /
    • 2008
  • 다변량 퍼지 의사결정트리(이하 MFDT)는 학습 모델의 구조가 간소하고 분류율이 높다는 장점 때문에 일반 퍼지 의사결정트리를 대신해 손동작 인식 시스템의 분류기로 사용되었다. 다양한 사용자의 손동작 특성을 분류하기 위해 여러 개의 인식 모델을 만들고 새로운 사용자에게 가장 적합한 모델을 선택해 사용하는 모델 선택 기법도 손동작 인식에 적용되었다. 모델 선택 과정을 통해 선택된 모델은 기존 모델 중에서 새로운 사용자의 특성에 가장 가깝지만 해당 사용자에 최적화된 모델이라고는 할 수 없다. 이 논문에서는 MFDT 모델을 새로 입력된 데이터를 이용해 적응시키는 방법을 설명하고 실험 결과를 통해 적응 성능을 검증한다.

The Simulator Design for the Analysis of Aircraft Longitudinal Dynamic Characteristics (항공기 세로 동특성 해석을 위한 시뮬레이터 설계)

  • Yoon, Sun-Ju
    • Journal of the Korea Computer Industry Society
    • /
    • v.7 no.4
    • /
    • pp.427-436
    • /
    • 2006
  • State-space method for the analysis of the dynamic characteristics of a body motion is set up as mathematical tool for the solution of differential equation by computer. Representation of a system is described as a simple form of matrix calculation and unique form of model is available for the linear or nonlinear, time variant or time invariant, mono variable or multi variable system etc. For the analysis of state-space method a complicated vector calculation is required, but this analysis can be simplified with the specific functions of a software package. Recently as the Graphical User Interface softwares are well-developed, then it is very simplified to execute the simulation of the dynamic characteristics for the state-space model with the interactive graphics treatment. The purpose of this study is to developed the simulator for the educational analysis of the dynamic characteristics of body motion, and for the analysis of the longitudinal dynamic characteristics of an aircraft that is primarily to design the simulator for the analysis of the transient response of an aircraft longitudinal stability.

  • PDF

Comparative Study on Method of Stochastic Modeling in Han River Basin (한강수계 추계학적 모델링 기법 비교 연구)

  • Kang, Kwon-Su;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.669-673
    • /
    • 2006
  • 수자원시스템의 설계, 계획, 운영에 있어서 핵심적인 수문변수의 미래거동에 대한 보다 나은 추정치가 필요하다. 예를 들어, 수력발전, 레크리에이션 이용과 하류지역의 오염희석과 같은 다중목적 기능을 유지하기 위하여 다목적댐을 운영할 때에, 다가오는 미래시간에 대한 계획된 유량의 예측이 요구된다. 예측의 목적은 미래에 발생할 정확한 예상치를 제공하는 것이다(Keith W. Hipel, 1994). 본 연구의 주요 목적은 다변량 추계학적 시스템의 해석을 위한 모형의 추정과 등정을 위한 과정을 개발하는데 있다. 일반적 추계학적 시스템 모형이 표현되며 그것으로부터 수문학적 시스템의 모형을 매우 적절하게 유도하기 위한 다중 입력-단일 출력 TF, TFN, ARMAX모형을 유도하는데 있다. 이 모형은 수문학적 시스템을 위한 경우인 상관된 입력을 설명할 수 있도록 개발된다. 일반적인 모형을 만드는 전략이며 실제유역시스템에 적용하여 검토된다.

  • PDF

An Improvement of Kubernetes Auto-Scaling Based on Multivariate Time Series Analysis (다변량 시계열 분석에 기반한 쿠버네티스 오토-스케일링 개선)

  • Kim, Yong Hae;Kim, Young Han
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.3
    • /
    • pp.73-82
    • /
    • 2022
  • Auto-scaling is one of the most important functions for cloud computing technology. Even if the number of users or service requests is explosively increased or decreased, system resources and service instances can be appropriately expanded or reduced to provide services suitable for the situation and it can improves stability and cost-effectiveness. However, since the policy is performed based on a single metric data at the time of monitoring a specific system resource, there is a problem that the service is already affected or the service instance that is actually needed cannot be managed in detail. To solve this problem, in this paper, we propose a method to predict system resource and service response time using a multivariate time series analysis model and establish an auto-scaling policy based on this. To verify this, implement it as a custom scheduler in the Kubernetes environment and compare it with the Kubernetes default auto-scaling method through experiments. The proposed method utilizes predictive data based on the impact between system resources and response time to preemptively execute auto-scaling for expected situations, thereby securing system stability and providing as much as necessary within the scope of not degrading service quality. It shows results that allow you to manage instances in detail.

Evaluation of applicability of pan coefficient estimation method by multiple linear regression analysis (다변량 선형회귀분석을 이용한 증발접시계수 산정방법 적용성 검토)

  • Rim, Chang-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.3
    • /
    • pp.229-243
    • /
    • 2022
  • The effects of monthly meteorological data measured at 11 stations in South Korea on pan coefficient were analyzed to develop the four types of multiple linear regression models for estimating pan coefficients. To evaluate the applicability of developed models, the models were compared with six previous models. Pan coefficients were most affected by air temperature for January, February, March, July, November and December, and by solar radiation for other months. On the whole, for 12 months of the year, the effects of wind speed and relative humidity on pan coefficient were less significant, compared with those of air temperature and solar radiation. For all meteorological stations and months, the model developed by applying 5 independent variables (wind speed, relative humidity, air temperature, ratio of sunshine duration and daylight duration, and solar radiation) for each station was the most effective for evaporation estimation. The model validation results indicate that the multiple linear regression models can be applied to some particular stations and months.

Application of Transfer function Model in Han River Basin (한강수계 전이함수 모형 적용)

  • Kang, Kwon-Su;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1512-1516
    • /
    • 2007
  • 자신의 현재와 과거의 시계열데이터만을 가지고 시계열 모형을 구축하는 단변량 ARIMA모형 분석법과는 달리, 관심의 대상이 되는 출력시계열과 이와 관련있는 입력시계열의 동태적 특성을 나타내는 전이함수모형(Transfer function model)을 사용하여 소양강댐, 충주댐, 화천댐에 대한 월별 수문자료를 이용하여 유입량을 예측해 보고자 한다. 본 연구의 주요 목적은 다변량 추계학적 시스템의 해석을 위한 모형의 추정과 등정을 위한 과정을 개발하는데 있다. 일반적 추계학적 시스템 모형이 표현되며 그것으로부터 수문학적 시스템의 모형을 매우 적절하게 유도하기 위한 다중 입력-단일 출력 TF, TFN모형을 유도하는데 있다. 이 모형은 수문학적 시스템을 위한 경우에 있어 상관된 입력을 설명할 수 있도록 개발된다. 일반적으로 모형을 만드는 전략이 유도되며 실제유역시스템에 적용하여 검토된다. 한강수계 주요 다목적댐인 소양강댐, 충주댐, 화천댐의 수문자료를 가지고 추계학적 모형(TF, TFN)에 의한 결과와 실제유입량을 비교하여 검토하고자 한다.

  • PDF

A Study on the Node Split in Decision Tree with Multivariate Target Variables (다변량 목표변수를 갖는 의사결정나무의 노드분리에 관한 연구)

  • Kim, Seong-Jun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.386-390
    • /
    • 2003
  • Data mining is a process of discovering useful patterns for decision making from an amount of data. It has recently received much attention in a wide range of business and engineering fields. Classifying a group into subgroups is one of the most important subjects in data mining. Tree-based methods, known as decision trees, provide an efficient way to finding the classification model. The primary concern in tree learning is to minimize a node impurity, which is evaluated using a target variable in the data set. However, there are situations where multiple target variable should be taken into account, for example, such as manufacturing process monitoring, marketing science, and clinical and health analysis. The purpose of this article is to present some methods for measuring the node impurity, which are applicable to data sets with multivariate target variables. For illustration, a numerical cxample is given with discussion.

A Study of Disinfection Process Automation through Control Logic Program Development (제어로직 프로그램 개발을 통한 소독공정 자동운전에 관한 연구)

  • Park, Jong-Duk;Shin, Gang-Wook;Hong, Sung-Taek;Lee, Chang-Goo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3644-3653
    • /
    • 2011
  • This study proposes the automation of disinfection process in water treat plant to reach target effluent chlorine concentration rate according to chlorine consumption rate by varying travel time. Hydraulic analysis about the process and local facility was surveyed first and the program for automatic operation was developed to solve current problem, whose applied result was presented and proved to be better than present controller. Especially using multi variable process algorithm, the correlation coefficient is analyzed between environment factor and reaction time, and process control prove to be stable through model estimation with optimal control input.

A Study on the Structural Analysis of Controllability in Chemical Processes (화학 공정의 제어성의 구조적 분석에 관한 연구)

  • Lee Byung Woo;Kim Yoon Sik;Yoon En Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.1
    • /
    • pp.27-32
    • /
    • 1999
  • Chemical processes are highly nonlinear, multivariable systems and have complex structures. However, the controllability evaluation procedures are complicated, and the required information is very often unknown at the early design stage. Therefore, it is necessary to develop a procedure to evaluate and enhance controllability while designing processes and plants. To evaluate controllability in the design stage, it is most efficient to analyze process structure. Relative order can be used as a measure of 'physical closeness' between input and output variable. Structural controllability analysis using relative order is shown to be effective in a case study of heat exchanger network synthesis.

  • PDF

Self-Organizing Fuzzy Modeling Using Creation of Clusters (클러스터 생성을 이용한 자기구성 퍼지 모델링)

  • Koh, Taek-Beom
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.334-340
    • /
    • 2002
  • This paper proposes a self-organizing fuzzy modeling which can create a new hyperplane-shaped cluster by applying multiple regression to input/output data with relatively large fuzzy entropy, add the new cluster to fuzzy rule base and adjust parameters of the fuzzy model in repetition. Tn the coarse tuning, weighted recursive least squared algorithm and fuzzy C-regression model clustering are used and in the fine tuning, gradient descent algorithm is used to adjust parameters of the fuzzy model precisely And learning rates are optimized by utilizing meiosis-genetic algorithm. To check the effectiveness and feasibility of the suggested algorithm, four representative examples for system identification are examined and the performance of the identified fuzzy model is demonstrated in comparison with that of the conventional fuzzy models.