Journal of the Korean Data and Information Science Society
/
v.7
no.1
/
pp.145-159
/
1996
다변량 발병시간자료는 각 개개 환자에게 있어 합병증이 발생되거나 혹은 유사 환자군(집락) 내의 발병시간이 상관되어진 생의학자료에서 흔히 볼 수 있다. HMULCOX는 그런 자료를 분석하기 위한 한글 통계 패키지 가운데 하나이다. 이 프로그램은 관련된 발병시간들이 독립이 아닐때에도 COX 비례 위험 모형의 주변확률분포를 계산해 준다. 주어진 조건으로는 주변확률모형의 기본위험율은 일정한 상수, 흑은 변수라도 관계없다. 또한 치료실패율의 치료변수들(공변량)의 효과에 대해 다양한 통계적 추론이 가능하다. 기본적으로 주변확률분포접근법으로 설계되었지만 HMULCOX는 여러 가지 추론 방법을 선택하는 데 일반적으로 충분하다. 이 프로그램으로 2개의 예를 들어 실행하겠다.
Proceedings of the Korea Information Processing Society Conference
/
2018.10a
/
pp.561-564
/
2018
최근 빠르게 발생하는 빅데이터 스트림이 다양한 분야에서 활용되고 있다. 이러한 빅데이터 전체를 수집하고 처리하는 것은 매우 비경제적이므로, 데이터 스트림 중 필요한 데이터를 걸러내는 필터링 과정이 필요하다. 본 논문에서는 아파치 스톰(Apache Storm)을 사용하여 데이터 스트림의 질의 필터링 시스템을 구축한다. 스톰은 대용량 데이터 스트림을 처리하기 위한 실시간 분산 병렬 처리 프레임워크이다. 하지만, 스톰은 입력 데이터 구조나 알고리즘 변경 시, 코드의 수정과 재배포, 재시작 등이 필요하다. 따라서, 본 논문에서는 이 같은 문제를 해결하기 위해 아파치 카프카(Apache Kafka)를 사용하여 데이터 수집 모듈과 스톰의 처리 모듈을 분리함으로써 시스템의 가용성을 크게 높인다. 또한, 시스템을 웹 기반 클라이언트-서버 모델로 구현하여 사용자가 언제 어디에서든 질의 필터링 시스템을 사용할 수 있게 하며, 웹 클라이언트를 통해 입력한 질의를 자동적 분석하는 쿼리 파서를 구현하여 별도의 프로그램의 수정 없이 질의 필터링을 적용할 수 있다.
To determine whether FT-IR spectral analysis based on multivariate analysis could be used to discriminate Chinese cabbage breeding line at metabolic level, whole cell extracts of nine different breeding lines (three paternal, three maternal and three $F_1$ lines) were subjected to Fourier transform infrared spectroscopy (FT-IR). FT-IR spectral data of Chinese cabbage plants were analyzed by principal component analysis (PCA), partial least square discriminant analysis (PLS-DA), and hierarchical clustering analysis (HCA). The hierarchical dendrograms based on PLS-DA from two of three cross combinations showed that paternal, maternal, and their progeny $F_1$ lines samples were perfectly separated into three branches in breeding line dependent manner. However, a cross combination failed to fully discriminate them into three branches. Thus, hierarchical dendrograms based on PLS-DA of FT-IR spectral data of Chinese cabbage breeding lines could be used to represent the most probable chemotaxonomical relationship among maternal, paternal, and $F_1$ plants. Furthermore, these metabolic discrimination systems could be applied for rapid selection and classification of useful Chinese cabbage cultivars.
Out of the total 17,000 reservoirs in Korea, 13,600 small agricultural reservoirs do not have hydrological measurement facilities, making it difficult to predict water storage volume and appropriate operation. This paper examined univariate and multivariate long short-term memory (LSTM) modeling to predict the storage rate of agricultural reservoirs using remote sensing and artificial intelligence. The univariate LSTM model used only water storage rate as an explanatory variable, and the multivariate LSTM model added n-day accumulative precipitation and date of year (DOY) as explanatory variables. They were trained using eight years data (2013 to 2020) for Idong Reservoir, and the predictions of the daily water storage in 2021 were validated for accuracy assessment. The univariate showed the root-mean square error (RMSE) of 1.04%, 2.52%, and 4.18% for the one, three, and five-day predictions. The multivariate model showed the RMSE 0.98%, 1.95%, and 2.76% for the one, three, and five-day predictions. In addition to the time-series storage rate, DOY and daily and 5-day cumulative precipitation variables were more significant than others for the daily model, which means that the temporal range of the impacts of precipitation on the everyday water storage rate was approximately five days.
Journal of the Korean Data and Information Science Society
/
v.25
no.4
/
pp.807-817
/
2014
This paper considers multivariate time series modelling of PM10 data in Korea collected from 2008 to 2011. We consider both temporal and spatial dependencies of PM10 by applying the sparse vector autoregressive (sVAR) modelling proposed by Davis et al. (2013). It utilizes the partial spectral coherence to measure cross correlation between different regions, in turn provides the sparsity in the model while balancing the parsimony of model and the goodness of fit. It is also shown that sVAR performs better than usual vector autoregressive model (VAR) in forecasting.
This study investigates longitudinal patterns in middle school students' mathematics interest and achievement using panel data from the 4th to 6th year of the Gyeonggi Education Panel Study. Results from the multivariate growth mixture model confirmed the existence of heterogeneous characteristics in the longitudinal trajectory of students' mathematics interest and achievement. Students were classified into four latent classes: a low-level class with weak interest and achievement, a high-level class with strong interest and achievement, a middlelevel-increasing class where interest and achievement rise with grade, and a middle-level-decreasing class where interest and achievement decline with grade. Each class exhibited distinct patterns in the change of interest and achievement. Moreover, an examination of the correlation between intercepts and slopes in the multivariate growth mixture model reveals a positive association between interest and achievement with respect to their initial values and growth rates. We further explore predictive variables influencing latent class assignment. The results indicated that students' educational ambition and time spent on private education positively affect mathematics interest and achievement, and the influence of prior learning varies based on its intensity. The perceived instruction method significantly impacts latent class assignment: teacher-centered instruction increases the likelihood of belonging to higher-level classes, while learner-centered instruction increases the likelihood of belonging to lower-level classes. This study has significant implications as it presents a new method for analyzing the longitudinal patterns of students' characteristics in mathematics education through the application of the multivariate growth mixture model.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.10a
/
pp.210-212
/
2022
In the manufacturing industry, various sensors are attached to monitor the status of production facility. In many cases, the data obtained through these sensors is time series data. In order to determine whether the status of the production facility is abnormal, the process of extracting patterns from time series data must be preceded. Also various methods for extracting patterns from time series data are studied. In this paper, we use matrix profile algorithm to extract patterns from the collected multivariate time series data. Through this, the pattern of multi sensor data currently being collected from the CNC machine is extracted.
Jong-Min Jeong;Jae-Sung Son;Jae-Sung Park;Sang-Min Lee
Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.709-711
/
2023
안전관리를 위한 인공지능 기술은 꾸준히 연구되고 있는 분야다. 특히, 컴퓨터 비전 기술을 활용한 CCTV 영상 분석은 군중의 동선과 밀도를 파악하는데 유용하며, 대규모 실내 공간에서 체계적인 안전관리를 가능하게 한다. 그러나 기존의 CCTV 카메라를 사용한 군중 수 추정은 가려짐(occlusion)과 같은 한계가 있다. 본 논문은 무선 랜 신호 데이터 분석 기법을 활용하여 수집한 데이터를 활용하여 실내 환경에서 군중 수를 추정하고자 한다. 본 논문에서는 인원 수 분류 예측을 위해 셰이플릿 확장 변환(Random Dilated Shapelet Transform) 기법을 제안한다. 단일 데이터 세트 내 분류 결과와, TX, RX 배치 방식에 따른 분류 성능의 차이는 모델의 성능 부족보다 데이터의 특성을 고려한 새로운 접근 방법의 필요성을 알려준다.
최근 유해성이 강한 지표오존농도가 대기환경의 주요한 문제로 부각되고 있다. 본 연구에서는 경기도 평택과 서울 정동지역의 오존농도를 설명 변수를 사용할 수 있는 다변량 시계열 모형인 ARE(자기회귀오차) 모형으로 분석하였다. ARE모형에서는 오존 전체자료를 사용한 전체모형과 오존농도가 41ppb 이상 되는 자료를 사용한 부분모형 두 가지 모형을 비교하였다. ARE의 오존농도 설명변수로는 오존농도와 연관 있는 8종류의 기상자료와 4종류의 대기오염자료를 고려하였다. 기상자료의 8가지 설명변수로 일 최고온도, 일사량, 풍속, 상대습도, 강수량, 이슬점온도, 수증기압, 운량 자료를 사용하였다. 대기오염자료의 4가지 설명변수로는 아황산가스(SO2), 이산화질소(NO2), 코발트(CO)와 프로메툼 10(PM10)를 사용하였다.
An innovative method for separating overlapping latent fingerprints, using laser-induced plasma spectroscopy (LIPS) combined with multivariate analysis, is reported in the current study. LIPS provides the capabilities of real-time analysis and high-speed scanning, as well as data regarding the chemical components of overlapping fingerprints. These spectra provide valuable chemical information for the forensic classification and reconstruction of overlapping latent fingerprints, by applying appropriate multivariate analysis. This study utilizes principal-component analysis (PCA) and partial-least-squares (PLS) techniques for the basis classification of four types of fingerprints from the LIPS spectra. The proposed method is successfully demonstrated through a classification example of four distinct latent fingerprints, using discrimination such as soft independent modeling of class analogy (SIMCA) and partial-least-squares discriminant analysis (PLS-DA). This demonstration develops an accuracy of more than 85% and is proven to be sufficiently robust. In addition, by laser-scanning analysis at a spatial interval of 125 ㎛, the overlapping fingerprints were separated as two-dimensional forms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.