• Title/Summary/Keyword: 다변량 데이터

Search Result 220, Processing Time 0.029 seconds

비례위험모형분석을 위한 한글멀콕스(HMULCOX)

  • Lee, Sang-Bok;Park, Eui-Jun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.7 no.1
    • /
    • pp.145-159
    • /
    • 1996
  • 다변량 발병시간자료는 각 개개 환자에게 있어 합병증이 발생되거나 혹은 유사 환자군(집락) 내의 발병시간이 상관되어진 생의학자료에서 흔히 볼 수 있다. HMULCOX는 그런 자료를 분석하기 위한 한글 통계 패키지 가운데 하나이다. 이 프로그램은 관련된 발병시간들이 독립이 아닐때에도 COX 비례 위험 모형의 주변확률분포를 계산해 준다. 주어진 조건으로는 주변확률모형의 기본위험율은 일정한 상수, 흑은 변수라도 관계없다. 또한 치료실패율의 치료변수들(공변량)의 효과에 대해 다양한 통계적 추론이 가능하다. 기본적으로 주변확률분포접근법으로 설계되었지만 HMULCOX는 여러 가지 추론 방법을 선택하는 데 일반적으로 충분하다. 이 프로그램으로 2개의 예를 들어 실행하겠다.

  • PDF

Apache Storm based Query Filtering System for Multivariate Data Streams (다변량 데이터 스트림을 위한 아파치 스톰 기반 질의 필터링 시스템)

  • Kim, Youngkuk;Son, Siwoon;Moon, Yang-Sae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.561-564
    • /
    • 2018
  • 최근 빠르게 발생하는 빅데이터 스트림이 다양한 분야에서 활용되고 있다. 이러한 빅데이터 전체를 수집하고 처리하는 것은 매우 비경제적이므로, 데이터 스트림 중 필요한 데이터를 걸러내는 필터링 과정이 필요하다. 본 논문에서는 아파치 스톰(Apache Storm)을 사용하여 데이터 스트림의 질의 필터링 시스템을 구축한다. 스톰은 대용량 데이터 스트림을 처리하기 위한 실시간 분산 병렬 처리 프레임워크이다. 하지만, 스톰은 입력 데이터 구조나 알고리즘 변경 시, 코드의 수정과 재배포, 재시작 등이 필요하다. 따라서, 본 논문에서는 이 같은 문제를 해결하기 위해 아파치 카프카(Apache Kafka)를 사용하여 데이터 수집 모듈과 스톰의 처리 모듈을 분리함으로써 시스템의 가용성을 크게 높인다. 또한, 시스템을 웹 기반 클라이언트-서버 모델로 구현하여 사용자가 언제 어디에서든 질의 필터링 시스템을 사용할 수 있게 하며, 웹 클라이언트를 통해 입력한 질의를 자동적 분석하는 쿼리 파서를 구현하여 별도의 프로그램의 수정 없이 질의 필터링을 적용할 수 있다.

Rapid discrimination system of Chinese cabbage (Brassica rapa) at metabolic level using Fourier transform infrared spectroscopy (FT-IR) based on multivariate analysis (배추 대사체 추출물의 FT-IR 스펙트럼 및 다변량 통계분석을 통한 계통 신속 식별 체계)

  • Ahn, Myung Suk;Lim, Chan Ju;Song, Seung Yeob;Min, Sung Ran;Lee, In Ho;Nou, Ill-Sup;Kim, Suk Weon
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.383-390
    • /
    • 2016
  • To determine whether FT-IR spectral analysis based on multivariate analysis could be used to discriminate Chinese cabbage breeding line at metabolic level, whole cell extracts of nine different breeding lines (three paternal, three maternal and three $F_1$ lines) were subjected to Fourier transform infrared spectroscopy (FT-IR). FT-IR spectral data of Chinese cabbage plants were analyzed by principal component analysis (PCA), partial least square discriminant analysis (PLS-DA), and hierarchical clustering analysis (HCA). The hierarchical dendrograms based on PLS-DA from two of three cross combinations showed that paternal, maternal, and their progeny $F_1$ lines samples were perfectly separated into three branches in breeding line dependent manner. However, a cross combination failed to fully discriminate them into three branches. Thus, hierarchical dendrograms based on PLS-DA of FT-IR spectral data of Chinese cabbage breeding lines could be used to represent the most probable chemotaxonomical relationship among maternal, paternal, and $F_1$ plants. Furthermore, these metabolic discrimination systems could be applied for rapid selection and classification of useful Chinese cabbage cultivars.

Prediction of Water Storage Rate for Agricultural Reservoirs Using Univariate and Multivariate LSTM Models (단변량 및 다변량 LSTM을 이용한 농업용 저수지의 저수율 예측)

  • Sunguk Joh;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1125-1134
    • /
    • 2023
  • Out of the total 17,000 reservoirs in Korea, 13,600 small agricultural reservoirs do not have hydrological measurement facilities, making it difficult to predict water storage volume and appropriate operation. This paper examined univariate and multivariate long short-term memory (LSTM) modeling to predict the storage rate of agricultural reservoirs using remote sensing and artificial intelligence. The univariate LSTM model used only water storage rate as an explanatory variable, and the multivariate LSTM model added n-day accumulative precipitation and date of year (DOY) as explanatory variables. They were trained using eight years data (2013 to 2020) for Idong Reservoir, and the predictions of the daily water storage in 2021 were validated for accuracy assessment. The univariate showed the root-mean square error (RMSE) of 1.04%, 2.52%, and 4.18% for the one, three, and five-day predictions. The multivariate model showed the RMSE 0.98%, 1.95%, and 2.76% for the one, three, and five-day predictions. In addition to the time-series storage rate, DOY and daily and 5-day cumulative precipitation variables were more significant than others for the daily model, which means that the temporal range of the impacts of precipitation on the everyday water storage rate was approximately five days.

The sparse vector autoregressive model for PM10 in Korea (희박 벡터자기상관회귀 모형을 이용한 한국의 미세먼지 분석)

  • Lee, Wonseok;Baek, Changryong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.4
    • /
    • pp.807-817
    • /
    • 2014
  • This paper considers multivariate time series modelling of PM10 data in Korea collected from 2008 to 2011. We consider both temporal and spatial dependencies of PM10 by applying the sparse vector autoregressive (sVAR) modelling proposed by Davis et al. (2013). It utilizes the partial spectral coherence to measure cross correlation between different regions, in turn provides the sparsity in the model while balancing the parsimony of model and the goodness of fit. It is also shown that sVAR performs better than usual vector autoregressive model (VAR) in forecasting.

Classification of latent classes and analysis of influencing factors on longitudinal changes in middle school students' mathematics interest and achievement: Using multivariate growth mixture model (중학생들의 수학 흥미와 성취도의 종단적 변화에 따른 잠재집단 분류 및 영향요인 탐색: 다변량 성장혼합모형을 이용하여)

  • Rae Yeong Kim;Sooyun Han
    • The Mathematical Education
    • /
    • v.63 no.1
    • /
    • pp.19-33
    • /
    • 2024
  • This study investigates longitudinal patterns in middle school students' mathematics interest and achievement using panel data from the 4th to 6th year of the Gyeonggi Education Panel Study. Results from the multivariate growth mixture model confirmed the existence of heterogeneous characteristics in the longitudinal trajectory of students' mathematics interest and achievement. Students were classified into four latent classes: a low-level class with weak interest and achievement, a high-level class with strong interest and achievement, a middlelevel-increasing class where interest and achievement rise with grade, and a middle-level-decreasing class where interest and achievement decline with grade. Each class exhibited distinct patterns in the change of interest and achievement. Moreover, an examination of the correlation between intercepts and slopes in the multivariate growth mixture model reveals a positive association between interest and achievement with respect to their initial values and growth rates. We further explore predictive variables influencing latent class assignment. The results indicated that students' educational ambition and time spent on private education positively affect mathematics interest and achievement, and the influence of prior learning varies based on its intensity. The perceived instruction method significantly impacts latent class assignment: teacher-centered instruction increases the likelihood of belonging to higher-level classes, while learner-centered instruction increases the likelihood of belonging to lower-level classes. This study has significant implications as it presents a new method for analyzing the longitudinal patterns of students' characteristics in mathematics education through the application of the multivariate growth mixture model.

Pattern Extraction of Manufacturing Time Series Data Using Matrix Profile (매트릭스 프로파일을 이용한 제조 시계열 데이터 패턴 추출)

  • Kim, Tae-hyun;Jin, Kyo-hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.210-212
    • /
    • 2022
  • In the manufacturing industry, various sensors are attached to monitor the status of production facility. In many cases, the data obtained through these sensors is time series data. In order to determine whether the status of the production facility is abnormal, the process of extracting patterns from time series data must be preceded. Also various methods for extracting patterns from time series data are studied. In this paper, we use matrix profile algorithm to extract patterns from the collected multivariate time series data. Through this, the pattern of multi sensor data currently being collected from the CNC machine is extracted.

  • PDF

A Study on Random Dilated Shapelet Transform for classifying multivariate signal data (다변량 신호 데이터 분류를 위한 확장 셰이플릿 변환 기법)

  • Jong-Min Jeong;Jae-Sung Son;Jae-Sung Park;Sang-Min Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.709-711
    • /
    • 2023
  • 안전관리를 위한 인공지능 기술은 꾸준히 연구되고 있는 분야다. 특히, 컴퓨터 비전 기술을 활용한 CCTV 영상 분석은 군중의 동선과 밀도를 파악하는데 유용하며, 대규모 실내 공간에서 체계적인 안전관리를 가능하게 한다. 그러나 기존의 CCTV 카메라를 사용한 군중 수 추정은 가려짐(occlusion)과 같은 한계가 있다. 본 논문은 무선 랜 신호 데이터 분석 기법을 활용하여 수집한 데이터를 활용하여 실내 환경에서 군중 수를 추정하고자 한다. 본 논문에서는 인원 수 분류 예측을 위해 셰이플릿 확장 변환(Random Dilated Shapelet Transform) 기법을 제안한다. 단일 데이터 세트 내 분류 결과와, TX, RX 배치 방식에 따른 분류 성능의 차이는 모델의 성능 부족보다 데이터의 특성을 고려한 새로운 접근 방법의 필요성을 알려준다.

경기도 평택지역과 서울 정동지역 지표오존농도의 시계열모형 연구

  • Lee, Hun-Ja
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.29-36
    • /
    • 2006
  • 최근 유해성이 강한 지표오존농도가 대기환경의 주요한 문제로 부각되고 있다. 본 연구에서는 경기도 평택과 서울 정동지역의 오존농도를 설명 변수를 사용할 수 있는 다변량 시계열 모형인 ARE(자기회귀오차) 모형으로 분석하였다. ARE모형에서는 오존 전체자료를 사용한 전체모형과 오존농도가 41ppb 이상 되는 자료를 사용한 부분모형 두 가지 모형을 비교하였다. ARE의 오존농도 설명변수로는 오존농도와 연관 있는 8종류의 기상자료와 4종류의 대기오염자료를 고려하였다. 기상자료의 8가지 설명변수로 일 최고온도, 일사량, 풍속, 상대습도, 강수량, 이슬점온도, 수증기압, 운량 자료를 사용하였다. 대기오염자료의 4가지 설명변수로는 아황산가스(SO2), 이산화질소(NO2), 코발트(CO)와 프로메툼 10(PM10)를 사용하였다.

  • PDF

Forensic Classification of Latent Fingerprints Applying Laser-induced Plasma Spectroscopy Combined with Chemometric Methods (케모메트릭 방법과 결합된 레이저 유도 플라즈마 분광법을 적용한 유류 지문의 법의학적 분류 연구)

  • Yang, Jun-Ho;Yoh, Jai-Ick
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.3
    • /
    • pp.125-133
    • /
    • 2020
  • An innovative method for separating overlapping latent fingerprints, using laser-induced plasma spectroscopy (LIPS) combined with multivariate analysis, is reported in the current study. LIPS provides the capabilities of real-time analysis and high-speed scanning, as well as data regarding the chemical components of overlapping fingerprints. These spectra provide valuable chemical information for the forensic classification and reconstruction of overlapping latent fingerprints, by applying appropriate multivariate analysis. This study utilizes principal-component analysis (PCA) and partial-least-squares (PLS) techniques for the basis classification of four types of fingerprints from the LIPS spectra. The proposed method is successfully demonstrated through a classification example of four distinct latent fingerprints, using discrimination such as soft independent modeling of class analogy (SIMCA) and partial-least-squares discriminant analysis (PLS-DA). This demonstration develops an accuracy of more than 85% and is proven to be sufficiently robust. In addition, by laser-scanning analysis at a spatial interval of 125 ㎛, the overlapping fingerprints were separated as two-dimensional forms.