• Title/Summary/Keyword: 다변량 공정

Search Result 76, Processing Time 0.022 seconds

Notes on identifying source of out-of-control signals in phase II multivariate process monitoring (다변량 공정 모니터링에서 이상신호 발생시 원인 식별에 관한 연구)

  • Lee, Sungim
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • Multivariate process control has become important in various applied fields. For instance, there are many situations in which the simultaneous monitoring of multivariate quality characteristics is necessary for the manufacturing industry. Despite its importance, its practical usage is not as convenient because it is difficult to identify the source of the out-of-control signal in a multivariate control chart. In this paper, we will introduce how to detect the source of the out-of-control by using confidence intervals for new observations, and will discuss the identification and interpretation of the out-of-control variable through simulation studies.

Construction of Energy Model on Hot Rolling Process (열간압연공정 에너지 사용 모델 기술개발)

  • Hong, Jongheui;Lee, Jinhee;Shin, Gihoon;Kim, Seongjoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.265-267
    • /
    • 2020
  • 본 논문에서는 열간압연 공정에 있어 효율적인 제품 생산 스케줄링에 필수적인 제품단위 에너지 사용 모델링 기법을 제안한다. 제안된 모델은 시스템 자원을 효율적 혹은 최소화하여 사용하여 실시간 처리량을 최대화함으로써 생산 예정 리스트로부터의 예측 작업 수행시간을 최소화할 수 있도록 한다. 제안된 기법은 다변량 선형 모델 방식으로 구성됨으로써 인공 지능 혹은 신경망 학습 방식에 비교하여 그 처리 속도가 빠르다는 장점을 가지고 있다. 본 논문에서는 서두에서 대상 응용처인 철강 산업과 열간 압연 공정 및 에너지 스케줄링에 대하여 간략히 언급한 후 본문에서 모델링을 위한 사전 데이터 수집, 모델링 기법을 자세히 설명하고 결론에서 모델의 정확도 성능을 최신 신경망 기법과 비교하여 검증하였다.

  • PDF

Missing Value Estimation and Sensor Fault Identification using Multivariate Statistical Analysis (다변량 통계 분석을 이용한 결측 데이터의 예측과 센서이상 확인)

  • Lee, Changkyu;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.87-92
    • /
    • 2007
  • Recently, developments of process monitoring system in order to detect and diagnose process abnormalities has got the spotlight in process systems engineering. Normal data obtained from processes provide available information of process characteristics to be used for modeling, monitoring, and control. Since modern chemical and environmental processes have high dimensionality, strong correlation, severe dynamics and nonlinearity, it is not easy to analyze a process through model-based approach. To overcome limitations of model-based approach, lots of system engineers and academic researchers have focused on statistical approach combined with multivariable analysis such as principal component analysis (PCA), partial least squares (PLS), and so on. Several multivariate analysis methods have been modified to apply it to a chemical process with specific characteristics such as dynamics, nonlinearity, and so on.This paper discusses about missing value estimation and sensor fault identification based on process variable reconstruction using dynamic PCA and canonical variate analysis.

Identification of the out-of-control variable based on Hotelling's T2 statistic (호텔링 T2의 이상신호 원인 식별)

  • Lee, Sungim
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.6
    • /
    • pp.811-823
    • /
    • 2018
  • Multivariate control chart based on Hotelling's $T^2$ statistic is a powerful tool in statistical process control for identifying an out-of-control process. It is used to monitor multiple process characteristics simultaneously. Detection of the out-of-control signal with the $T^2$ chart indicates mean vector shifts. However, these multivariate signals make it difficult to interpret the cause of the out-of-control signal. In this paper, we review methods of signal interpretation based on the Mason, Young, and Tracy (MYT) decomposition of the $T^2$ statistic. We also provide an example on how to implement it using R software and demonstrate simulation studies for comparing the performance of these methods.

Statistical Estimation for Hazard Function and Process Capability Index under Bivariate Exponential Process (이변량 지수 공정 하에서 위험함수와 공정능력지수에 대한 통계적 추정)

  • Cho, Joong-Jae;Kang, Su-Mook;Park, Byoung-Sun
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.3
    • /
    • pp.449-461
    • /
    • 2009
  • Higher sigma quality level is generally perceived by customers as improved performance by assigning a correspondingly higher satisfaction score. The process capability indices and the sigma level $Z_{st}$ ave been widely used in six sigma industries to assess process performance. Most evaluations on process capability indices focus on statistical estimation under normal process which may result in unreliable assessments of process performance. In this paper, we consider statistical estimation for bivariate VPCI(Vector-valued Process Capability Index) $C_{pkl}=(C_{pklx},\;C_{pklx})$ under Marshall and Olkin (1967)'s bivariate exponential process. First, we derive some limiting distribution for statistical inference of bivariate VPCI $C_{pkl}$. And we propose two asymptotic normal confidence regions for bivariate VPCI $C_{pkl}$. The proposed method may be very useful under bivariate exponential process. A numerical result based on our proposed method shows to be more reliable.

DD-plot for Detecting the Out-of-Control State in Multivariate Process (다변량공정에서 이상상태를 탐지하기 위한 DD-plot)

  • Jang, Dae-Heung;Yi, Seongbaek;Kim, Youngil
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.2
    • /
    • pp.281-290
    • /
    • 2013
  • It is well known that the DD-plot is a useful graphical tool for non-parametric classification. In this paper, we propose another use of DD-plot for detecting the out-of-control state in multivariate process. We suggested a dynamic version of DD-plot and its accompanying a quality index plot in such case.

Data-based On-line Diagnosis Using Multivariate Statistical Techniques (다변량 통계기법을 활용한 데이터기반 실시간 진단)

  • Cho, Hyun-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.538-543
    • /
    • 2016
  • For a good product quality and plant safety, it is necessary to implement the on-line monitoring and diagnosis schemes of industrial processes. Combined with monitoring systems, reliable diagnosis schemes seek to find assignable causes of the process variables responsible for faults or special events in processes. This study deals with the real-time diagnosis of complicated industrial processes from the intelligent use of multivariate statistical techniques. The presented diagnosis scheme consists of a classification-based diagnosis using nonlinear representation and filtering of process data. A case study based on the simulation data was conducted, and the diagnosis results were obtained using different diagnosis schemes. In addition, the choice of future estimation methods was evaluated. The results showed that the performance of the presented scheme outperformed the other schemes.

On-line Process Data-driven Diagnostics Using Statistical Techniques (실시간 공정 데이터와 통계적 방법에 기반한 이상진단)

  • Cho, Hyun-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.40-45
    • /
    • 2018
  • Intelligent monitoring and diagnosis of production processes based on multivariate statistical methods has been one of important tasks for safety and quality issues. This is due to the fact that faults and unexpected events may have serious impacts on the operation of processes. This study proposes a diagnostic scheme based on effective representation of process measurement data and is evaluated using simulation process data. The effects of utilizing a preprocessing step and nonlinear statistical methods are also tested using fifteen faults of the simulation process. Results show that the proposed scheme produced more reliable results and outperformed other tested schemes with none of the filtering step and nonlinear methods. The proposed scheme is expected to be robust to process noises and easy to develop due to the lack of required rigorous mathematical process models or expert knowledge.

Prediction of Flash Point of Binary Systems by Using Multivariate Statistical Analysis (다변량 통계 분석법을 이용한 2성분계 혼합물의 인화점 예측)

  • Lee, Bom-Sock;Kim, S.Y.;Chung, C.B.;Choi, S.H.
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.4 s.33
    • /
    • pp.29-33
    • /
    • 2006
  • Estimation of process safety is important in the chemical process design. Prediction for flash points of flammable substances used in chemical processes is the one of the methods for estimating process safety. Flash point is the property used to examine the potential for the fire and explosion hazards of flammable substances. In this paper, multivariate statistical analysis methods(partial least squares(PLS) quadratic partial least squares(QPLS)) using experimental data is suggested for predicting flash points of flammable substances of binary systems. The prediction results are compared with the values calculated by laws of Raoult and Van Laar equation.

  • PDF

Chemometric Analysis of 2D Fluorescence Spectra for Monitoring and Modeling of Fermentation Processes (생물공정 모니터링 및 모델링을 위한 2차원 형광스펙트럼의 다변량 분석)

  • Kang Tae-Hyoung;Sohn Ok-Jae;Kim Chun-Kwang;Chung Sang-Wook;Rhee Jong-Il
    • KSBB Journal
    • /
    • v.21 no.1 s.96
    • /
    • pp.59-67
    • /
    • 2006
  • 2D spectrofluorometer produces many spectral data during fermentation processes. The fluorescence spectra are analyzed using chemometric methods such as principal component analysis (PCA), principal component regression (PCR) and partial least square regression (PLS). Analysis of the spectral data by PCA results in scores and loadings that are visualized in score-loading plots and used to monitor a few fermentation processes by S. cerevisae and recombinant E. coli. Two chemometric models were established to analyze the correlation between fluorescence spectra and process variables using PCR and PLS, and PLS was found to show slightly better calibration and prediction performance than PCR.