Browse > Article

Chemometric Analysis of 2D Fluorescence Spectra for Monitoring and Modeling of Fermentation Processes  

Kang Tae-Hyoung (Department of Industrial Engineering, Research Center for Biophotonics, Chonnam National University)
Sohn Ok-Jae (Department of Material Chemical and Biochemical Engineering, BioProcess Technology Lab., Research Center for Biophotonics, Chonnam National University)
Kim Chun-Kwang (Department of Material Chemical and Biochemical Engineering, BioProcess Technology Lab., Chonnam National University)
Chung Sang-Wook (Department of Industrial Engineering, Research Center for Biophotonics, Chonnam National University)
Rhee Jong-Il (School of Applied Chemical Engineering, BioProcess Technology Lab., Research Center for Biophotonics, Chonnam National University)
Publication Information
KSBB Journal / v.21, no.1, 2006 , pp. 59-67 More about this Journal
Abstract
2D spectrofluorometer produces many spectral data during fermentation processes. The fluorescence spectra are analyzed using chemometric methods such as principal component analysis (PCA), principal component regression (PCR) and partial least square regression (PLS). Analysis of the spectral data by PCA results in scores and loadings that are visualized in score-loading plots and used to monitor a few fermentation processes by S. cerevisae and recombinant E. coli. Two chemometric models were established to analyze the correlation between fluorescence spectra and process variables using PCR and PLS, and PLS was found to show slightly better calibration and prediction performance than PCR.
Keywords
Chemometric method; fermentation process; process monitoring; 2D fluorescence spectra;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tartakovsky, B., M. Scheintuch, J. M. Hilmer, and T. Scheper (1996), Application of scanning fluorometery for monitoring of a fermentation process, Biotech. Progr. 12, 126-131   DOI   ScienceOn
2 Boehl, D., D. Solle, B. Hitzmann, and T. Scheper (2003), Chemometric modeling with two-dimensional fluorescence data for Claviceps purpurea bioprocess characterization, J. Biotech. 105, 179-188   DOI   ScienceOn
3 Bo, R. (2003), Multivariate calibration. What is in chemometrics for the analytical chemist? Anal. Chim. Acta. 500, 185-194   DOI   ScienceOn
4 Dufour, E. and A. Riaublanc (1997), Potentiality of spectroscopic methods for the characterization of dairy products I Front-face fluorescence study of raw, heated and homogenized milks, Le Lait 77(6), 657-670   DOI
5 Guimet, F., J. Ferre, R. Bogue, and F. X. Rius (2004), Application of unfold principal component analysis and parallel factor analysis to the extrapolatory analysis of olive oils by means of excitation-emission matrix fluorescence spectroscopy, Anal. Chim. Acta. 515. 75-85   DOI   ScienceOn
6 Cooper, J. B. (1999), Chemometric analysis of Raman spectroscopic data for process control applications, Chemomet Intell. Lab. Sys. 46, 231-247   DOI   ScienceOn
7 Otsuka, M. (2004), Comapartive particle size determination of phenacetin bulk powder by using Kubelka-Munk theory and principal component regression analyis based on near-infrared spectroscopy, Powder Tech. 141, 244-250   DOI   ScienceOn
8 Shimizu, H., K. Araki, S. Shioya, and K. I. Suga (1991), Optimal production of glutathione by controlling the specific growth rate of yeast in fed-batch culture, Biotech. Bioeng. 38, 196-205   DOI
9 Geladi, P. and B. R. Kowalski (1986), Partial least-squares regression: tutorial, Anal. Chim. Acta. 185, 1-17   DOI   ScienceOn
10 Lee, K. I., Yim Y. S., Chung S. W., Wei J., and Rhee J. I. (2006), Application of artificial neural networks to the analysis of 2D fluorescence spectra in recombinant E.coli fermentation processes, J. Chem. Tech. Biotech. in print
11 Hegedorn, A., R. L. Legge, and H. Budman (2003), Evaluation of spectrofluorometry as a tool for estimation in fed-batch fermentations, Biotech. Bioeng. 83(1), 104-111   DOI   ScienceOn
12 Karim. M. N., D. Hodge, and L. Simon (2003), Data-based modeling and analysis of bioprocesses: some real experiences, Biotech. Prog. 19, 1591-1605   DOI   ScienceOn
13 Climander, C. and C. F. Mandenius (2002), Online monitoring of a bioprocess based on a multi-analyzer system and multivariate statistical process modeling, J. Chem. Tech. Biotech. 77, 1157-1168   DOI   ScienceOn
14 Chung, S. Y, Seo K. H., and Rhee J. I. (2005), Influence of culture conditions on the production of extra-cellular 5-aminolevulinic acid (ALA) by recombinant E. coli, Proc. Biochem. 40. 385-394
15 Mukherjee, J., C. Lindermann, and T. Scheper (1999), Fluorescence monitoring during cultivation of Enterobacter aerogenes at different oxygen levels, Appl. Microbiol. Biotech. 52, 489-494   DOI
16 Vaidyanathan, S., S. White, L. Harvey, and B. McNeil (2003), Influence of morphology on the near-infrared spectra of mycelial biomass and its implications in bioprocess monitoring, Biotech. Bioeng. 82(6), 715-724   DOI   ScienceOn
17 Morel, M., K. Santamaria, M. Perrier, S. R. Guiot, and B. Tartakovsky (2004), Application of multi-wavelength fluorometery for on-line monitoring of an anerobic digestion process, Water Res. 38, 3287-3296   DOI   ScienceOn
18 Teshima, N., H. Katsumate, M. Kurihara, T. Sakai, and T. Kawashima (1999), Flow-injection determination of copper(II) based on its catalysis on the redox reaction of cysteine with iron(III) in the presence of 1,10-phenanthroline, Talanta 50, 41-47   DOI   ScienceOn
19 Givens D. I. and E. R. Deaville (1999), The current and future role of near infrared reflectance spectroscopy in animal nutrition, J. Agr. Res. 50(7), 1131-1145   DOI
20 Geladi P., B. Sthson, J. Nystrom, T. Lillhinga, T. Lestander, and J. Burger (2004), Chemometrics in Spectroscopy, Spectrochim. Acta. Part B 59, 1347-1357
21 Skibsted, E., C. Lindemann, C. Roca, and L. Olsson (2001), On-line bioprocess monitoring with a multi-wavelength fluorescence sensor using multivariate calibration, J. Biotech. 88, 47-57   DOI   ScienceOn
22 Jolliffe, I. T. (1986), Principal component analysis, New York, Springer
23 Langergraber G., Fleischmann N., and F. Hofstaedter (2003), A multivariate calibration procedure for UV/VIS spectrometric quantification of organic matter and nitrate in wastewater, Water Sci. Tech. 47(2), 63-71
24 Liu, R. X., J. Kuang, Q. Gong, and X. L. Hou (2003), Principal component regression analysis with SPSS, Comp. Meth. Prog. Biomed. 71, 141-147   DOI   ScienceOn
25 Maltlab manual, vers. 6.1, The Mathworks, Inc., USA, 2002
26 Rhee, J. I., Lee K.-I., Kim C.-K., Yim Y.-S., Chung S-W., Wei, J., and K.-H. Bellgardt (2005), Classification of two-dimensional fluorescence spectra using self-organizing maps, Biochem. Eng. J. 22, 135-144   DOI   ScienceOn
27 Tietze, F. (1969), Enzymic method for quantitative determination of nanogram amount of total and oxidized glutathione, Anal. Biochem. 27, 502-522   DOI   ScienceOn
28 Basheer, I. A. and M. Hajmeer (2000), Artificial neural networks: fundamentals, computing, design, and application, J. Microbiol. Meth. 43, 3-31   DOI   ScienceOn
29 Bhat, N. V. and T. J. (1992), Determining model structure for neural network stripping, Compo Chem. Eng. 16, 271-281
30 Lindemann, C., S. Marose, H. O. Nielson, and T. Scheper (1998), 2-Dimensional fluorescence spectroscopy for on-line bioprocess monitoring, Sens. Actuat. B 51, 271-277
31 Haack, M. B., A. Eliasson, and L. Olsson (2004), On-line cell mass monitoring of Saccharomyces cerevisiaecultivations by multi-wavelength fluorescence, J. Biotech. 114, 199-208   DOI   ScienceOn
32 Marose, S., C. Lindemann, and T. Scheper (1998), Two-dimensional fluorescence spectroscopy: A new tool for on-line bioprocess monitoring, Biotech. Prog. 14, 63-74   DOI   ScienceOn
33 Tartakovsky, B., L. A. Lishman, and R. L. Legge (1996), Application of multi-wavelength fluorometry for monitoring wastewater treatment process dynamics, Water Res. 30, 2941-2948   DOI   ScienceOn
34 Wentzell, P. D. and L. V. Montoto (2003), Comparison of principal components regression and partial least squares regression through generic simulations of complex mixturtes, Chem. Intell. Lab. Sys. 65, 257-279   DOI   ScienceOn
35 Wolf, G., J. S. Almeida, C. Pinheiro, V. Correia, C. Rodrigues, MAM. Reis, and J. G. Crespo (2001), Two-dimensional fluorometry coupled with artificial neural networks: a novel method for on-line monitoring of complex biological processes, Biotech. Bioeng. 72, 297-306   DOI   ScienceOn