• Title/Summary/Keyword: 다변량회귀

Search Result 341, Processing Time 0.021 seconds

Inverter-Based Solar Power Prediction Algorithm Using Artificial Neural Network Regression Model (인공 신경망 회귀 모델을 활용한 인버터 기반 태양광 발전량 예측 알고리즘)

  • Gun-Ha Park;Su-Chang Lim;Jong-Chan Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.383-388
    • /
    • 2024
  • This paper is a study to derive the predicted value of power generation based on the photovoltaic power generation data measured in Jeollanam-do, South Korea. Multivariate variables such as direct current, alternating current, and environmental data were measured in the inverter to measure the amount of power generation, and pre-processing was performed to ensure the stability and reliability of the measured values. Correlation analysis used only data with high correlation with power generation in time series data for prediction using partial autocorrelation function (PACF). Deep learning models were used to measure the amount of power generation to predict the amount of photovoltaic power generation, and the results of correlation analysis of each multivariate variable were used to increase the prediction accuracy. Learning using refined data was more stable than when existing data were used as it was, and the solar power generation prediction algorithm was improved by using only highly correlated variables among multivariate variables by reflecting the correlation analysis results.

The sparse vector autoregressive model for PM10 in Korea (희박 벡터자기상관회귀 모형을 이용한 한국의 미세먼지 분석)

  • Lee, Wonseok;Baek, Changryong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.4
    • /
    • pp.807-817
    • /
    • 2014
  • This paper considers multivariate time series modelling of PM10 data in Korea collected from 2008 to 2011. We consider both temporal and spatial dependencies of PM10 by applying the sparse vector autoregressive (sVAR) modelling proposed by Davis et al. (2013). It utilizes the partial spectral coherence to measure cross correlation between different regions, in turn provides the sparsity in the model while balancing the parsimony of model and the goodness of fit. It is also shown that sVAR performs better than usual vector autoregressive model (VAR) in forecasting.

Hedging effectiveness of KOSPI200 index futures through VECM-CC-GARCH model (벡터오차수정모형과 다변량 GARCH 모형을 이용한 코스피200 선물의 헷지성과 분석)

  • Kwon, Dongan;Lee, Taewook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1449-1466
    • /
    • 2014
  • In this paper, we consider a hedge portfolio based on futures of underlying asset. A classical way to estimate a hedge ratio for a hedge portfolio of a spot and futures is a regression analysis. However, a regression analysis is not capable of reflecting long-run equilibrium between a spot and futures and volatility clustering in the conditional variance of financial time series. In order to overcome such defects, we analyzed KOSPI200 index and futures using VECM-CC-GARCH model and computed a hedge ratio from the estimated conditional covariance-variance matrix. In real data analysis, we compared a regression and VECM-CC-GARCH models in terms of hedge effectiveness based on variance, value at risk and expected shortfall of log-returns of hedge portfolio. The empirical results show that the multivariate GARCH models significantly outperform a regression analysis and improve hedging effectiveness in the period of high volatility.

Rock TBM design model derived from the multi-variate regression analysis of TBM driving data (TBM 굴진자료의 다변량 회귀분석에 의한 암반대응형 TBM의 설계모델 도출)

  • Chang, Soo-Ho;Choi, Soon-Wook;Lee, Gyu-Phil;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.6
    • /
    • pp.531-555
    • /
    • 2011
  • This study aims to derive the statistical models for the estimation of the required specifications of a rock TBM as well as for its cutterhead design suitable for a given rock mass condition. From a series of multi-variate regression analysis of 871 TBM driving data and 51 linear rock cutting test results, the optimum models were newly proposed to consider a variety of rock properties and mechanical cutting conditions. When the derived models were applied to two domestic shield tunnels, their predictions of cutter penetration depth, cutter acting forces and cutter spacing were very close to real TBM driving data, showing their high applicability.

Multivariate Statistical Analysis and Prediction for the Flash Points of Binary Systems Using Physical Properties of Pure Substances (순수 성분의 물성 자료를 이용한 2성분계 혼합물의 인화점에 대한 다변량 통계 분석 및 예측)

  • Lee, Bom-Sock;Kim, Sung-Young
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.3
    • /
    • pp.13-18
    • /
    • 2007
  • The multivariate statistical analysis, using the multiple linear regression(MLR), have been applied to analyze and predict the flash points of binary systems. Prediction for the flash points of flammable substances is important for the examination of the fire and explosion hazards in the chemical process design. In this paper, the flash points are predicted by MLR based on the physical properties of pure substances and the experimental flash points data. The results of regression and prediction by MLR are compared with the values calculated by Raoult's law and Van Laar equation.

  • PDF

Penalized least distance estimator in the multivariate regression model (다변량 선형회귀모형의 벌점화 최소거리추정에 관한 연구)

  • Jungmin Shin;Jongkyeong Kang;Sungwan Bang
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • In many real-world data, multiple response variables are often dependent on the same set of explanatory variables. In particular, if several response variables are correlated with each other, simultaneous estimation considering the correlation between response variables might be more effective way than individual analysis by each response variable. In this multivariate regression analysis, least distance estimator (LDE) can estimate the regression coefficients simultaneously to minimize the distance between each training data and the estimates in a multidimensional Euclidean space. It provides a robustness for the outliers as well. In this paper, we examine the least distance estimation method in multivariate linear regression analysis, and furthermore, we present the penalized least distance estimator (PLDE) for efficient variable selection. The LDE technique applied with the adaptive group LASSO penalty term (AGLDE) is proposed in this study which can reflect the correlation between response variables in the model and can efficiently select variables according to the importance of explanatory variables. The validity of the proposed method was confirmed through simulations and real data analysis.

기업부도예측을 위한 통합알고리즘

  • Bae Jae-Gwon;Kim Jin-Hwa
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2006.06a
    • /
    • pp.195-202
    • /
    • 2006
  • 본 연구에서는 보다 효과적인 기업부도예측을 위하여, 동계적 방법과 인공지능 방법을 결합한 통합모형을 제시하였다. 이를 위하여 통계적인 모형 중에서 가장 널리 활용되고 있는 다변량 판별분석, 로지스틱 회귀분석과 인공 지능적인 방법으로서 최근 널리 사용되고 있는 인공신경망, 규칙유도기법, 베이지안 망의 5가지 방법론을 통합한 Voting with Performance & Weights from ANN(WP-ANN) 통합모형을 제시하였다. 실험결과, 본 연구에서 제안한 WP-ANN 통합모형은 다변량 판별분석, 로지스탁 회귀분석, 인공신경망, 규칙유도기법, 베이지안 망 등의 단일모형과 비교한 결과 가장 예측정확성이 유수한 것으로 나타났다. 따라서 본 연구를 통해 기업부도예측에 있어서 WP-ANN 통합모형이 기존의 모형들에 비해 우수한 예측정확성을 나타냄을 알 수 있었다.

  • PDF

KCYP data analysis using Bayesian multivariate linear model (베이지안 다변량 선형 모형을 이용한 청소년 패널 데이터 분석)

  • Insun, Lee;Keunbaik, Lee
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.6
    • /
    • pp.703-724
    • /
    • 2022
  • Although longitudinal studies mainly produce multivariate longitudinal data, most of existing statistical models analyze univariate longitudinal data and there is a limitation to explain complex correlations properly. Therefore, this paper describes various methods of modeling the covariance matrix to explain the complex correlations. Among them, modified Cholesky decomposition, modified Cholesky block decomposition, and hypersphere decomposition are reviewed. In this paper, we review these methods and analyze Korean children and youth panel (KCYP) data are analyzed using the Bayesian method. The KCYP data are multivariate longitudinal data that have response variables: School adaptation, academic achievement, and dependence on mobile phones. Assuming that the correlation structure and the innovation standard deviation structure are different, several models are compared. For the most suitable model, all explanatory variables are significant for school adaptation, and academic achievement and only household income appears as insignificant variables when cell phone dependence is a response variable.

Comparisons of the Pan and Penman Evaporation Trends in South Korea (우리나라 증발접시 증발량과 Penman 증발량 추세 비교분석)

  • Rim, Chang-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5B
    • /
    • pp.445-458
    • /
    • 2010
  • The effects of geographical and climatic factors on annual and monthly pan and Penman evaporation were analyzed. 52 climatological stations were selected and trend analyses were performed. Furthermore, cluster analysis and multiple linear regression analysis were performed to understand the effects of geographical and climatic factors on pan and Penman evaporation. Based on stepwise multiple linear regression analysis, annual pan evaporation is proved to be mainly controlled by urbanization as geographical factor, and annual pan evaporation is also controlled by temperature, relative humidity, wind speed, and solar radiation as climatic factor. Especially wind speed is considered to be most significant climatic factor which affects pan evaporation. Meanwhile, Penman evaporation is not affected by geographical factors but it is affected by climate factors such as temperature, relative humidity, wind speed, and solar radiation except precipitation. Furthermore, the study results show that only proximity to coast affects pan evaporation trend on July; however, geographical and climatic factors do not affect pan evaporation trends in annual basis and monthly basis (January, April, and October). On the other hand, Penman evaporation trends were not affected by geographical factors in annual and monthly basises.