• Title/Summary/Keyword: 다물체 동력학

Search Result 30, Processing Time 0.026 seconds

Multi-Body Dynamics Characteristics of Variable Nozzle (가변노즐의 다물체동력학적 특성)

  • Park, Dong-Chang;Lee, Sang-Youn;Yun, Su-Jin;Yoon, Hyun-Gull
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.711-712
    • /
    • 2010
  • In the present work, the dynamic characteristics of variable nozzles are described. Variable nozzles are used to enhance the effectiveness of aircraft engines at various altitudes. The dynamic characteristics of variable nozzle mechanism including flaps are analyzed by a multi-body dynamics analysis software, RecurDyn.

  • PDF

Technology for Fatigue Life Prediction of Mechanical Components using Multibody Dynamics (다물체동력학을 이용한 기계 부품의 피로수명 예측 기술)

  • Han, Hyeong-Seok
    • 연구논문집
    • /
    • s.27
    • /
    • pp.47-55
    • /
    • 1997
  • Fatigue life prediction of mechanical components is necessary to develop new products, which is very expensive and time-consuming. This paper reviews technologies proposed for computation of dynamic stress in mechanical components. The methods based on multibody dynamics are considering more real operational conditions than other methods. The technology for fatigue life prediction without the prototype for experiment results in cost and time saving. This technology can be applied to design of various mechanical components like carbody.

  • PDF

반디호 복합재 착륙장치의 착륙특성에 관한 해석

  • Choi, Sun-Woo;Park, Il-Kyung
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.15-20
    • /
    • 2005
  • Most of studies for the ground load and ground behavior of landing gear have been conducted with an assumption that the structure of landing gear was rigid body. The assumption of rigid body during design process results in many errors or discrepancy. High ground load occurs in 3 directions on the shock absorbing strut during landing. This ground load initiated high structural deformation. In this study, the flex-multi-body dynamics is applied to adapt flexible bodies, so the results of analysis can be described close to landing gears real behaviour.

  • PDF

Study of of Flexible Multibody Dynamics with Rotary Inertia (회전관성 효과를 고려한 탄성 다물체 동력학에 관한 연구)

  • 김성수
    • Journal of KSNVE
    • /
    • v.6 no.3
    • /
    • pp.287-296
    • /
    • 1996
  • A virtual work form of flexible multibody dynamic formulation with rotary inertia has been derived. For the analysis of large flexible multibody systems, deformation modal coordinates have been employed to represent coupled motion between gross and vibrational motion. For the efficient evaluation of the entries in the mass matrix, a flexible body has been treated as a collection of mass points. The rotary inertia was generated from the consistent mass matrix in a finite element model. Deformation mode shapes were obtained from finite element analysis. Bending and twisting vibration analyses of a cantilever have been carried out to see rotary inertia effects. A space flexible robot simulation has been also carried out to show effectiveness of the proposed formulation. This formulation is effective to the model that consists of beam, plate, or shell element that contains rotational degree of freedom at the nodal point. It is also effective to the flexible body model to which a large lumped rotary inertia is attached.

  • PDF

Dynamic Stress Analysis of Flexible Multibody using DADS (DADS를 이용한 유연 다물체의 동응력 해석)

  • Ahn, K.W.;Seo, K.H.;Hwang, W.G.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.107-112
    • /
    • 1998
  • A great deal of time and effort are required to evaluate the safety and durability of a vehicle structure in the vehicle development stage. It is difficult to find the reasons for cracks which occur in the body and frame of a vehicle during tests. Recently computer aided engineering techniques have been utilized to solve the problems of safety and durability of vehicles. In this study, a dynamic stress analysis is performed on the frame of the vehicle by rigid and flexible multibody dynamics techniques. The result of the analysis is compared to that of the actual test. The full vehicle dynamic models for the rigid and flexible bodies are developed by DADS package. The modal coordinate system is used to save time for the dynamic stress analysis. The flexible multibody dynamic models have 12 normal modes considering the flexibility of the frame. Dynamic stresses arc calculated by relating the stress influence coefficients and the applied forces.

  • PDF

Multibody Dynamic Analysis of a Test Miner on Soft Cohesive Soil (연약지반 시험집광기의 다물체 동력학 해석)

  • KIM HYUNG-WOO;HONG SUP;CHOI JONG-SU;YEU TAE-KYEONG
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.277-282
    • /
    • 2004
  • This paper concerns about dynamic analysis of an underwater test miner, which operates on cohesive soil. The test miner consists of tracked vehicle and pick-up. device. The motion oj pick-up device relative to the vehicle chassis is controlled by two pairs of hydraulic cylinders. The test miner is modeled by means of a commercial software. A terramechanics model of cohesive soft soil is implemented to the software and applied to dynamic analysis of the test miner model. The dynamic responses of test miner are studied with respect to of four different types of terrain conditions.

  • PDF