• Title/Summary/Keyword: 다단연소기

Search Result 60, Processing Time 0.025 seconds

Characteristics of Starship System Development (Starship 시스템 개발 특징)

  • Yoo, Jaehan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.5
    • /
    • pp.53-64
    • /
    • 2021
  • SpaceX has lowered rocket launch cost innovatively and put first stage reuse to the practical use with Falcon 9. Now the company is developing Starship system that is fully reusable with the heaviest payload in the world. So the system can lower the cost much more and fulfull more diverse mission. For the system the company have developed Raptor engine which is a full-flow staged combustion cycle one with methane fuel. And for the full reusability the company is manufacturing and testing the system prototypes with the barely used technologies such as stainless steel tank, belly flop and retropropulsion during descent. In this study the specification, missions and design features of the system are investigated. Also the development processes of Raptor engine and initial 13 Starship prototypes, which have been manufactured very rapidly, are presented.

Acoustic Damping Swirl Injector for Reduction of Combustion Instability (연소불안정 저감을 위한 음향학적 감쇠기능성 스월 인젝터)

  • Kim, Hyun-Sung;Kim, Byung-Sun;Kim, Dong-Jun;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.7-12
    • /
    • 2007
  • Swirl injector with multi-stage tangential entry was analyzed to suppress high-frequency combustion instability in Liquid Rocket Engines. In order to analyze the effect of swirl injector as an acoustic absorber, swirl injector was regarded as a quarter-wave resonator and it's damping capacity is verified in atmospheric temperature. It has a finite mode of vibration and natural frequencies which can be tuned to the natural frequencies of a model combustion chamber. When the targeted injector for each modes is located at anti-node point, the amplitude of modes was decreased. And when the injector of large diameter is mounted, the split of mode which accompanies the decrease of amplitude appeared. From the experimental data, it is proved that if the location of injector mounted is located at an anti-node position of the targeted modes with proper volume, the amplitude of modes is decreased and the split of modes occurs at anti-node point.

  • PDF

Perspective of Technology for Liquid Rocket Engines (액체로켓엔진 기술 전망)

  • Cho, Won Kook;Ha, Sung Up;Moon, Insang;Jung, Eun Whan;Kim, Jin Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.8
    • /
    • pp.675-685
    • /
    • 2016
  • A research area on liquid rocket engine has been suggested. Downsizing through combustion pressure rise and low price are major issues to gas generator cycle engines. A very high pressure turbopump and material against oxidizer rich environment may be necessary technologies for staged combustion cycle engines. Integrated analysis saving computing time is the trend of rocket engine systems analysis area. Other important research topics are the methane engine for reusable booster to reduce the cost, 3D printing and materials for high temperature or oxidizer rich environment.

Convergent Study on the Hydro-Gas Reforming Cyclo-Incinerator (물 가스 개질 고속선회 소각로에 관한 융합연구)

  • Han, Doo-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.231-236
    • /
    • 2020
  • A water reforming reaction high-speed turning incinerator test facility was prepared. The reforming reaction chamber and the combustion chamber were directly connected. The incinerator and dust collecting device were integrated and made into a double bulkhead type air cooling structure. The blower is built into the dust collector to improve spatial efficiency. An axial flow type multi-stage dust collector was applied by collecting dust by using a plurality of dust collecting bins attached to the side of the dust collecting part. As a result of measuring dioxin among the exhausted gases, results below the standard value were obtained. As a result of measuring exhaust gas and heavy metals, results were obtained below the environmental standard.

An Experimental Study of Petroleum Cokes Air Staged Burner (공기다단 적용 석유코크스 연료 전용 연소기에 대한 실험적 연구)

  • Kwon, Minjun;Lee, Changyeop;Kim, Sewon
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.2
    • /
    • pp.40-45
    • /
    • 2015
  • This study is aimed to study combustion characteristics of low $NO_X$ burner using petroleum cokes as fuel. The petroleum coke, which is produced through the oil refining process, is an attractive fuel in terms of its high heating value and relatively low price. But petroleum coke is a challenging fuel because of its low volatile content, high sulfur and nitrogen content, which give rise to undesirable emission characteristics and low ignitability. The petroleum cokes burner is operated at fuel rich condition, and overfire air are supplied to achieve fuel lean condition. The low $NO_X$ burner is designed to control fuel and air mixing to achieve air staged combustion, in addition secondary and tertiary air are supplied through swirler. Air distribution ratio of triple staged air are optimized experimentally. The result showed that $NO_X$ concentration is lowest when overfire air is used, and the burner function at a fuel rich condition.

Investigation of NO Formation Characteristics in Multi Staged Air Combustor (공기 다단 연소기 화염의 NO 발생특성에 관한 연구)

  • Kim, Han-Seok;An, Guk-Yeong;Baek, Seung-Uk;Yu, Myeong-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1594-1605
    • /
    • 2001
  • In this study, a numerical simulation was developed which was capable of predicting the characteristics of NO formation in pilot scale combustor adopting the air-staged burner flame. The numerical calculation was constructed by means of establishing the mathematical models fur turbulence, turbulent combustion, radiation and turbulent nitric oxide chemistry. Turbulence was solved with standard k-$\xi$ model and the turbulent combustion model was incorporated using a two step reaction scheme together with an eddy dissipation model. The radiative transfer equation was calculated by means of the discrete ordinates method with the weighted sum of gray gases model for CO$_2$and H$_2$O. In the NO chemistry model, the chemical reaction rates for thermal and prompt NO were statistically averaged using the $\beta$ probability density function. The results were validated by comparison with measurements. For the experiment, a 0.2 MW pilot multi-air staged burner has been designed and fabricated. Only when the radiation was taken into account, the predicted gas temperature was in good agreement with the experimental one, which meant that the inclusion of radiation was indispensable for modeling multi-air staged gas flame. This was also true of the prediction of the NO formation, since it heavily depended on temperature. Subsequently, it was found that the multi-air staged combustion technique might be used as a practical tool in reducing the NO formation by controlling the peak flame temperature.

Korean Reusable Launch Vehicle Development Strategy Using SpaceX's Strategy (SpaceX의 전략을 활용한 한국형 재사용 발사체 개발 전략)

  • Lee, Keum-Oh;Lee, Junseong;Park, Soon-Young;Roh, Woong-Rae;Im, Sung-Hyuck;Nam, Gi-Won;Seo, Daeban
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.101-112
    • /
    • 2021
  • SpaceX shows various strategies such as constructing various payload portfolio through the reuse of Falcon 9 and Falcon Heavy, constructing the launch vehicles using one type of engine, the transition from kerosene engine to methane engine, and the use of 3D printing. In this study, launch vehicle proposals that can cover a variety of payloads and trajectories from KOMPSAT to GEO-KOMPSAT were constructed, and ten launch vehicles using kerosene gas generator cycle engine, kerosene staged-combustion cycle engine, and methane staged-combustion cycle engine were reviewed. Of the ten launch vehicles, the reusable launch vehicle using a 35-ton methane engine was rated as the best in terms of development potential.

Dynamic Characteristics of Coaxial Swirl-jet Injector with Acoustic Excitation (동축형 스월-제트 분사기의 음향가진에 따른 동특성)

  • Bae, Jinhyun;Kim, Taesung;Jeong, Seokgyu;Jeong, Chanyeong;Choi, Jeong Yeol;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.99-107
    • /
    • 2018
  • In this study, the injector transfer function (ITF) of a gas-gas coaxial jet-swirl injector is measured by perturbing jet or swirl flow using a speaker as jet flow increases. As a result of measuring the ITF varying feed system length, a peak occurs at a resonance frequency of space where the perturbed flow passes. With jet excitation, the ITF magnitude decreases, but increases thereafter as increasing the jet flow. Therefore the larger the velocity difference between jet and swirl flow, the larger the ITF. With swirl excitation, ITF decreases as increasing the jet flow because of the energy decrease with respect to the constant downstream flow.

Studies on the Morphology of Smoke Particles for Each Type of Fire by Using Steady State Tube Furnace (등속공급 튜브연소로를 이용한 각 연소조건에서의 연기입자 형상 분석)

  • Goo, Jaehark
    • Fire Science and Engineering
    • /
    • v.28 no.1
    • /
    • pp.44-51
    • /
    • 2014
  • Smoke from fire is a mixture of combustion gases and particles which include micro-droplets formed from condensed organic vapors and carbonaceous agglomerates. The inhalation of smoke particles causes adverse health effects, and it is prerequisite for the hazard and risk analysis of the smoke particles to know how they behaviour in the respiratory tract. The characteristics of the absorption and adsorption of toxic gases and the amount and location of the particle deposition within the respiratory tract that determine the adverse health effects are related to the morphology and the size distribution of smoke particles. In the present work, as a preliminary study for the adverse health effects of smoke particles, the morphologies of the smoke particles from combustible materials were investigated for each fire stage: smouldering, well-ventilated flaming, small under-ventilated flaming, fully-developed under-ventilated fire. The steady-state tube furnace method given in ISO/TS 19700 was used for the generation of smoke particles. The fire stages were controlled by changing furnace temperature and equivalent ratio. The morphologies were analyzed by using Transmission Electron Microscope (Bio-TEM) by collecting the particles on TEM grids put on each stage of a cascade impactor.

A Numerical Study on Mixing Characteristics for Recess Length of Swirl Coaxial Injector (스월 동축형 분사기의 리세스 길이에 따른 혼합특성에 관한 수치적 연구)

  • Kim, Young-Jun;Hong, Moon-Geun;Lee, Soo-Yong;Sohn, Chae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.74-77
    • /
    • 2011
  • A mixing characteristics on recess length change of Gas-centered swirl coaxial injector using high-performance staged combustion rocket engine carry out study through CFD(Computational fluid dynamics). propellant phase that combined gas-liquid simulate gas-gas. In order to measure spreading angle, velocity distribution to injector exit and spray structure of propellant analyzed. Axial velocity increase by increasing recess length, but tangential velocity decrease. The result confirmed qualitative characteristics that the spreading angle decreases.

  • PDF