• Title/Summary/Keyword: 다단계 분류기

Search Result 17, Processing Time 0.023 seconds

Advanced Multistage Feature-based Classification Model (진보된 다단계 특징벡터 기반의 분류기 모델)

  • Kim, Jae-Young;Park, Dong-Chul
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.3
    • /
    • pp.36-41
    • /
    • 2010
  • An advanced form of Multistage Feature-based Classification Model(AMFCM), called AMFCM, is proposed in this paper. AMFCM like MFCM does not use the concatenated form of available feature vectors extracted from original data to classify each data, but uses only groups related to each feature vector to classify separately. The prpposed AMFCM improves the contribution rate used in MFCM and proposes a confusion table for each local classifier using a specific feature vector group. The confusion table for each local classifier contains accuracy information of each local classifier on each class of data. The proposed AMFCM is applied to the problem of music genre classification on a set of music data. The results demonstrate that the proposed AMFCM outperforms MFCM by 8% - 15% on average in terms of classification accuracy depending on the grouping algorithms used for local classifiers and the number of clusters.

Multistage Feature-based Classification Model (다단계 특징벡터 기반의 분류기 모델)

  • Song, Young-Soo;Park, Dong-Chul
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.1
    • /
    • pp.121-127
    • /
    • 2009
  • The Multistage Feature-based Classification Model(MFCM) is proposed in this paper. MFCM does not use whole feature vectors extracted from the original data at once to classify each data, but use only groups related to each feature vector to classify separately. In the training stage, the contribution rate calculated from each feature vector group is drew throughout the accuracy of each feature vector group and then, in the testing stage, the final classification result is obtained by applying weights corresponding to the contribution rate of each feature vector group. In this paper, the proposed MFCM algorithm is applied to the problem of music genre classification. The results demonstrate that the proposed MFCM outperforms conventional algorithms by 7% - 13% on average in terms of classification accuracy.

Study on Hand Pose Recognition Using Decomposed Approach with Subgroup-based scheme (소그룹 기반 분류에 의한 손자세 인식에 대한 연구)

  • 장효영;김대진;김정배;변증남
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1499-1502
    • /
    • 2003
  • 본 논문에서는 손 자세 인식을 위해 손 영상을 소그룹으로 나누고 최종적으로 소그룹 내에서 개별 모델로 분류하는 다단계 접근 방식을 취한다. 이 방식은 처음부터 모든 특성치들을 다 구하여 기존에 가지고 있는 모델 모두와 비교하는 대신, 먼저 소그룹으로 분류 후에 해당 소그룹 내의 모델만을 대상으로 비교 연산을 수행한다. 따라서 계산 량을 크게 줄일 수 있을 뿐 아니라, 확장이 용이하며, 각 소그룹 별로 특성화된 처리를 할 수 있으므로 효율적인 인식기의 구현이 가능하다.

  • PDF

Fast Support Vector Classification based on Artificial Neural Networks (신경망을 이용한 빠른 서포트 벡터 분류)

  • Kim, Kwang-In
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.604-606
    • /
    • 2004
  • 본 논문에서는 빠른 서포트 벡터 분류를 위해 신경망을 사용하는 방법을 제안한다. 주어 진 학습 데이터를 통해 낮은 학습 오류를 가지는 다단계 신경망을 얻으면 출력층을 제외한 은닉층은 주어진 문제를 선형분리 가능하게 하는 특징 추출기로 간주할 수 있다. 많은 계산시간을 요하는 키널 맵 대신 이를 사용해서 빠른 서포트 벡터 분류를 가능하게 하였다.

  • PDF

Multi-Level Image Retrieval Technique for Feature-Based Image Retrieval System (특징기반 영상 검색 시스템을 위한 다단계 영상 검색 기법)

  • 김봉기;신창둔;오해석
    • The Journal of Information Technology and Database
    • /
    • v.5 no.1
    • /
    • pp.85-96
    • /
    • 1998
  • 최근 멀티미디어 기술의 발전으로 인해 영상을 효율적으로 검색할 수 있는 영상 데이터베이스 시스템이 정보화 사회의 중요한 핵심 기술로 대두되고 있다. 본 논문에서는 내용기반 영상 데이터 검색을 위한 영상 특징 추출 방법으로 색상 정보와 모양 정보를 고려하는 다단계 영상 검색 시스템을 제안하였다. 제안된 시스템에서는 2단계로 이루어진다. 1단계에서는 색상 정보를 위해서 Striker 등이 제시한 색상 분포 특성을 이용한 색인 방법의 문제점을 보완하고 확장하여 지역 색상 분포 특성을 고려한 색인 방법을 사용하여 1차로 영상을 대 분류한다. 2단계에서는 1단계에서 대 분류된 집단 영상들에 대하여 2차로 모양 정보를 이용하여 사용자가 질의한 영상과 유사한 영상을 최종적으로 검색한다. 모양 정보를 위해서는 기존 불변 모멘트의 문제점인 많은 연산량과, Jain 등이 제시한 방향 히스토그램 인터섹션 방법에서 제기된 회전에 민감하다는 문제점을 해결하기 위해 물체의 윤곽선에 해당하는 화소들만을 대상으로 연산을 수행하는 향상된 불변 모멘트(Improved Moment Invariants: IMI)를 이용한다. 실험 영상으로 300개의 상표 영상을 사용하여 기존 방법들과의 비교 실험을 통해 향상된 검색 결과를 얻을 수 있었다.

  • PDF

Fast Multi-Phase Packet Classification Architecture using Internal Buffer and Single Entry Caching (내부 버퍼와 단일 엔트리 캐슁을 이용한 다단계 패킷 분류 가속화 구조)

  • Kang, Dae-In;Park, Hyun-Tae;Kim, Hyun-Sik;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.9
    • /
    • pp.38-45
    • /
    • 2007
  • With the emergence of new applications, packet classification is essential for supporting advanced internet applications, such as network security and QoS provisioning. As the packet classification on multiple-fields is a difficult and time consuming problem, internet routers need to classify incoming packet quickly into flows. In this paper, we present multi-phase packet classification architecture using an internal buffer for fast packet processing. Using internal buffer between address pair searching phase and remained fields searching phases, we can hide latency from the characteristic that search times of source and destination header fields are different. Moreover we guarantee the improvement by using single entry caching. The proposed architecture is easy to apply to different needs owing to its simplicity and generality.

Classifier Integration Model for Image Classification (영상 분류를 위한 분류기 통합모델)

  • Park, Dong-Chul
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.96-102
    • /
    • 2012
  • An advanced form of the Partitioned Feature-based Classifier with Expertise Table(PFC-ET) is proposed in this paper. As is the case with the PFC-ET, the proposed classifier model, called Classifier Integration Model(CIM), does not use the entire feature vectors extracted from the original data in a concatenated form to classify each datum, but rather uses groups of features related to each feature vector separately. The proposed CIM utilizes a proportion of selected cluster members instead of the expertise table in PFC-ET to minimize the error in confusion table. The proposed CIM is applied to the classification problem on two data sets, Caltech data set and collected terrain data sets. When compared with PFC model and PFC-ET model. the proposed CIM shows improvements in terms of classification accuracy and post processing efforts.

Face Detection Using Multiple Filters and Hybrid Neural Networks (다중 필터와 복합형 신경망을 이용한 얼굴 검출 기법)

  • Cho, Il-Gook;Park, Hyun-Jung;Kim, Ho-Joon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.191-194
    • /
    • 2005
  • 본 논문에서는 방송 영상에서 조명효과와 크기변화 등에 강인한 얼굴패턴 검출기법을 제시한다. 제안된 얼굴검출 모델은 영상 전처리 과정과 얼굴패턴 검출 과정으로 이루어진다. 전처리 과정은 조명변화에 대한 보정기능과 다중필터에 의한 후보영역 선별기능으로 구분된다. 얼굴패턴 검출과정은 다단계의 특징지도 생성과정과 패턴분류 과정으로 이루어진다. 특징지도를 생성하기 위하여 가보(Gabor) 필터계층을 포함하는 CNN(Convolutional Neural Networks)모델을 도입하였다. 다양한 배경을 고려한 효과적인 학습을 위하여 본 논문에서는 억제성의 뉴런(Inhibitory neuron)을 포함하는 구조의 CNN모델을 적용한다. CNN으로부터 추출되는 특징집합은 최종 단계에서 WFMM(Weighted Fuzzy Min Max) 모델을 사용하여 분류된다. 이때 사용되는 특징집합의 크기는 분류기의 규모 및 계산량의 결정적인 역할을 준다. 이에 본 연구에서는 최종 분류 과정에 사용되는 특징의 수를 효과적으로 줄이기 위해 FMM모델을 사용하는 적응적인 특징 선별 기법을 제안한다. 또한 실제 영상을 통한 실험결과로부터 제안된 이론의 타당성을 고찰한다.

  • PDF

A Basic Study on the Differential Diagnostic System of Laryngeal Diseases using Hierarchical Neural Networks (다단계 신경회로망을 이용한 후두질환 감별진단 시스템의 개발)

  • 전계록;김기련;권순복;예수영;이승진;왕수건
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.197-205
    • /
    • 2002
  • The objectives of this Paper is to implement a diagnostic classifier of differential laryngeal diseases from acoustic signals acquired in a noisy room. For this Purpose, the voice signals of the vowel /a/ were collected from Patients in a soundproof chamber and got mixed with noise. Then, the acoustic Parameters were analyzed, and hierarchical neural networks were applied to the data classification. The classifier had a structure of five-step hierarchical neural networks. The first neural network classified the group into normal and benign or malign laryngeal disease cases. The second network classified the group into normal or benign laryngeal disease cases The following network distinguished polyp. nodule. Palsy from the benign laryngeal cases. Glottic cancer cases were discriminated into T1, T2. T3, T4 by the fourth and fifth networks All the neural networks were based on multilayer perceptron model which classified non-linear Patterns effectively and learned by an error back-propagation algorithm. We chose some acoustic Parameters for classification by investigating the distribution of laryngeal diseases and Pilot classification results of those Parameters derived from MDVP. The classifier was tested by using the chosen parameters to find the optimum ones. Then the networks were improved by including such Pre-Processing steps as linear and z-score transformation. Results showed that 90% of T1, 100% of T2-4 were correctly distinguished. On the other hand. 88.23% of vocal Polyps, 100% of normal cases. vocal nodules. and vocal cord Paralysis were classified from the data collected in a noisy room.

Printed Hangul Recognition with Adaptive Hierarchical Structures Depending on 6-Types (6-유형 별로 적응적 계층 구조를 갖는 인쇄 한글 인식)

  • Ham, Dae-Sung;Lee, Duk-Ryong;Choi, Kyung-Ung;Oh, Il-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.1
    • /
    • pp.10-18
    • /
    • 2010
  • Due to a large number of classes in Hangul character recognition, it is usual to use the six-type preclassification stage. After the preclassification, the first consonent, vowel, and last consonent can be classified separately. Though each of three components has a few of classes, classification errors occurs often due to shape similarity such as 'ㅔ' and 'ㅖ'. So this paper proposes a hierarchical recognition method which adopts multi-stage tree structures for each of 6-types. In addition, to reduce the interference among three components, the method uses the recognition results of first consonents and vowel as features of vowel classifier. The recognition accuracy for the test set of PHD08 database was 98.96%.