• Title/Summary/Keyword: 다단계 동적 최적화

Search Result 7, Processing Time 0.022 seconds

유전 알고리즘 기반 다단계 최적설계 방법을 이용한 웨이퍼 단면 연삭기 구조물의 최적설계

  • 박현만;최영휴;김동석;하상백;이상직
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.321-321
    • /
    • 2004
  • 본 연구에서는 웨이퍼 단면 연삭기 구조물의 경량화 고강성화 최적설계를 위하여 가변벌점함수 유전 알고리즘을 이용한 다단계 최적설계 방법을 적용하였다. 구조강성 최대화와 중량 최소화라는 상반된 성질의 목적함수를 최적화하기 위하여 강성의 역수 개념인 컴플라이언스(compliance)를 도입하여 목적함수론 최소화시키는 문제로 만들었으며, 가증방법(weighted method)을 이용하여 다목적 함수를 단일 목적함수로 변환시켰다. 부재 단면형상 최적화 단계와 정적설계 최적화 단계, 및 동적 설계 최적화 단계를 순차적으로 수행하는 다단계 최적설계를 방법을 연삭기 구조물의 최적설계에 적용하였다.(중략)

  • PDF

Multiphase Dynamic Optimization of Machine Structures Using Genetic Algorithm (유전자 알고리즘을 이용한 공작기계구조물의 다단계 동적 최적화)

  • 이영우;성활경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.1027-1031
    • /
    • 2000
  • In this paper, multiphase dynamic optimization of machine structure is presented. The final goal is to obtain ( i ) light weight, and ( ii ) rigidity statically and dynamically. The entire optimization process is carried out in two steps. In the first step, multiple optimization problem with two objective functions is treated using Pareto genetic algorithm. Two objective functions are weight of the structure, and static compliance. In the second step, maximum receptance is minimized using genetic algorithm. The method is applied to a simplified milling machine.

  • PDF

Multi-step design optimization of a high speed machine tool structure using a genetic algorithm with dynamic penalty (동적 벌점함수 유전 알고리즘과 다단계 설계방법을 이용한 공작기계 구조물의 설계 최적화)

  • 최영휴;배병태;김태형;박보선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.108-113
    • /
    • 2002
  • This paper presents a multi-step structural design optimization method fur machine tool structures using a genetic algorithm with dynamic penalty. The first step is a sectional topology optimization, which is to determine the best sectional construction that minimize the structural weight and the compliance responses subjected to some constraints. The second step is a static design optimization, in which the weight and the static compliance response are minimized under some dimensional and safety constraints. The third step is a dynamic design optimization, where the weight static compliance, and dynamic compliance of the structure are minimized under the same constraints. The proposed design method was examined on the 10-bar truss problem of topology and sizing optimization. And the results showed that our solution is better than or just about the same as the best one of the previous researches. Furthermore, we applied this method to the topology and sizing optimization of a crossbeam slider for a high-speed machining center. The topology optimization result gives the best desirable cross-section shape whose weight was reduced by 38.8% than the original configuration. The subsequent static and dynamic design optimization reduced the weight, static and dynamic compliances by 5.7 %, 2.1% and 19.1% respectively from the topology-optimized model. The examples demonstrated the feasibility of the suggested design optimization method.

  • PDF

Applications of New Differential Dynamic Programming to the Control of Real-time Reservoir (새로운 미분동적 계획법에 의한 저수지군의 최적제어)

  • Sonu, Jung Ho;Lee, Jae Hyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.3
    • /
    • pp.27-42
    • /
    • 1984
  • The complexity and expensiveness of water resources projects have made optimum operation and design by computer-based techniques of increasing interest in recent years. Water resources problems in real world need many decisions under numerous constraints. In addition there are nonlinearities in the state and return function. This mathematical and technical troublesome must be overcome so that the optimum operation polices are determined. Then traditional dynamic optimization method encountered two major-cruxes: variable discretization and appearance of constraints. Even several recent methods which based on the Differential Dynamic Programming(DDP) have some difficulties in handling of constraints. This paper has presented New DDP which is applicable to multi-reservoir control. It is intended that the method suggested here is superior to abailable alternatives. This belief is supported by analysis and experiments(New DDT does not suffer course of dimensionality and requires no discretization and is able to handle easily all constraints nonlinearity).

  • PDF

Multi-step Optimization of the Moving Body for the High Speed Machinining Center using Weighted Method and G.A. (가중치방법과 유전알고리즘을 이용한 금형가공센터 고속이송체의 다단계 최적설계)

  • 최영휴;배병태;강영진;이재윤;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.23-27
    • /
    • 1997
  • This paper introduces the structural design optimization of a high speed machining center using multi-step optimization combined with G.A.(Genetic Algorithm) and Weighted Method. In this case, the design problem is to find out the best design variables which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously. Dimensional thicknesses of the thirteen structural members of the machine structure are adopted as design variables. The first step is the cross-section configuration optimization, in which the area moment of inertia of the cross-section for each structural member is maximized while its area is kept constant The second step is a static design optimization, In which the static compliance and the weight of the machine structure are minimized under some dimensional and safety constraints. The third step IS a dynamic design optimization, where the dynamic compliance and the structure weight are minimized under the same constraints. After optunization, static and dynamic compliances were reduced to 62.3% and 95.7% Eorn the initial design, while the weight of the moving bodies are also in the feaslble range.

  • PDF

Modeling and Simulation on a Direct Esterification Reactor for PET Polymerization and energy analysis (PET 직접 에스테르화 중합 반응기의 모델링 및 시뮬레이션과 에너지적 분석)

  • 김주열;권태인;여영구
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2000.11a
    • /
    • pp.67-72
    • /
    • 2000
  • PET는 합성섬유, 필름, 음료수병, 성형 플라스틱 등의 다양한 용도를 가지고 있으며 특히 섬유 원료부분에서는 전세계의 약 40%이상을 차지하고 있는 상업적 입장에서 아주 중요한 소재이다.[1]그러나, PET 제조공정은 긴 반응시간과 높은 반응온도, 대용량의 다단계 공정시설을 필요로 하는 대표적인 에너지 다소비 공정으로서 현대의 치열한 고분자 제품의 시장경쟁 상황에서 에너지 투입량 감축을 위한 공정의 해석 및 개발과 그로 인한 생산원가의 절감이 필수적이다. 본 연구에서는 실제 공장에서 사용되는 단일 연속식 직접 에스테르화 반응기(CSTR Direct Esterification Reactor)를 모델링하고 Van Krevelen[2]의 Group contribution method로 계산된 올리고머의 열용량값을 이용하여 에너지 소모량을 계산하였다. 모델링 결과는 모두 실제 공장의 자료와 비교되었으며 가장 제어하기 쉬운 변수에 따른 반응물의 물성과 에너지 소모량을 분석하였다. 또한 압력이 일정한 조건 하에서 입력변화에 따른 반응기의 동적 모델링을 동시에 수행하였으며 투입에너지량과 반응기의 운전지표와의 관계를 분석하였다. 이러한 연구는 실제 공정분석과 최적화에 있어서 소모 에너지량을 고려한 보다 정확한 지표를 제시하고 에너지 사용의 효율성을 높이는 데 기여할 수 있다.

  • PDF

An Optimum Design of Steel Frames by Second Order Elastic Analysis (2차 탄성해석법에 의한 강뼈대 구조물의 최적설계)

  • Park, Moon-Ho;Jang, Chun-Ho;Kim, Ki-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.123-133
    • /
    • 2006
  • The main objective of this study is to develop an optimization algorithm of framed structures with rigid and various semi-rigid connections using the multilevel dynamic programming and the sequential unconstrained minimization techniques (SUMT). The second-order elastic analysis is performed for steel framed structures. The second order elastic analysis is developed based on nonlinear beam-column theory considering the bowing effect. The following semi-rigid connections are considered; double web angle, top-seat angle and top-seat angle with web angle. We considered the three connection models, such as modified exponential, polynomial and three parameter model. The total weight of the structural steel is used as the objective function in the optimization process. The dimensions of steel cross section are selected as the design variables. The design constraints consist of strength requirements for axial, shear and flexural resistance and serviceability requirements.