• Title/Summary/Keyword: 다공판

Search Result 137, Processing Time 0.024 seconds

Fabrication of Porous Aluminum Oxide Using Flexible Thin Aluminum Foils (유연하고 얇은 알루미늄 포일을 사용한 다공성 알루미나 막 제작)

  • Park, Young-Ok;Kim, Seung-Woo;Kouh, Tae-Joon
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.90-94
    • /
    • 2007
  • We have fabricated porous aluminum oxide using flexible and thin aluminum foils with thickness of 0.025 and 0.2 mm. These foils were anodized with 0.3 M oxalic acid solution after being electropolished with ethanol/perchloric acid. During the anodization, the temperature of the electrolyte was maintained at $9^{\circ}C$ and the anodization voltage was varied between 0.4 and 40 V The surface of the anodized aluminum oxide was studied with a scanning electron microscope. From the scanning electron micrograph, we observed that when the voltage applied was above 1 V for a long period of time, due to a strong electrolysis reaction in electrolyte, the surface of the anodized oxide was destroyed. However, when the anodization voltage was less than 1 V, the anodization process was very stable and lasted much longer. Our results show that for a thin aluminum foil, unlike a thick plate, one requires small anodization voltage less than 1 V to form a porous aluminum oxide for long anodization time.

Thermal-Fluid Analysis with Flow Loss Coefficient on the Inlet and Exhaust Duct of Wheel-Loader (휠로더 흡배기구의 유동손실계수를 적용한 열유동해석)

  • Jeong, Chan-Hyeok;Lee, Jae-Seok
    • Transactions of the KSME C: Technology and Education
    • /
    • v.5 no.2
    • /
    • pp.97-104
    • /
    • 2017
  • In this study, we verify the accurate numerical analysis and simplify the perforated plate of inlet and exhaust duct using porous media for the cost reduction and the efficiency improvement of thermal-fluid analysis to evaluate cooling performance of wheel-loader. The flow loss coefficient of the perforated plate is defined by the experiment result. To define analytically the flow loss coefficient of the perforated plate, we calculate the pressure drop of unit-cell and compare to experiment result. Finally, we compare the heat balance test and the simplified simulation result on the inlet and exhaust duct of wheel-loader. After this study, we verify the applicability of the simplified analysis method on the inlet and exhaust duct of wheel-loader. And, foundation which can carry out effectively the evaluation and improvement for cooling performance of wheel-loader is prepared.

Evaluation of an electrical impactor with porous metal substrate (다공성 금속판을 이용한 전기적 임팩터의 평가)

  • Jeong Jeong-Seon;Gwon Sun-Park;Lee Gyu-Won
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.11a
    • /
    • pp.276-277
    • /
    • 2002
  • One of drawbacks of the inertial impactor measurement is the required long sampling time (Keskinen et al., 1992). In a gravimetric method, an impaction substrate must be weighed and placed on the corresponding collection plate before being assembled. After sampling, the inertial impactor is disassembled and the collection plate is weighted again. The sampling time depends on the sampled particle mass because the collected particle mass must be sufficiently high to be measured by a sensitive microbalance. (omitted)

  • PDF

RHRS에서의 공기흡입 방지에 관한 모의실험

  • 김상녕;장완호
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.277-283
    • /
    • 1996
  • 원자력 발전소의 일차계통 부분충수운전시 잔열제거 계통 입구에서 자유수면 와동으로 인해 계통에 공기가 흡입될 수 있으며 이로 인해 계통이 상실되거나 계기에 오차가 유발되어 많은 안전상의 문제를 야기할 수 있다. 이러한 문제들을 해결할 수 있도록 흡입구의 구조를 개선하기 위해 다양한 구조에 대해 실험을 수행한 결과 깔때기 모양과 우회유로를 설치한 경우. 그리고 기존 T자형에 와동 방지판을 부착하는 것이 매우 효과적임이 밝혀졌다. 하지만 깔때기 모양이나 우회유로의 경우는 배관구조의 변경이 필요하여 따라서 기존 발전소나 신설 발전소에 적용시 문제점이 많으므로 필요시 붙이고 불필요하면 제거가능한 탈착식인 다공 와동 방지판을 최종적으로 선정하였다. 이 경우에 대하여 1/4 축소 실험장치로 실험한 결과 운전유량 영역에서 와동의 발생으로 인한 공기흡입과 펌프의 정지를 획기적으로 줄여주는 것으로 밝혀졌다.

  • PDF

Numerical Analysis of the Effect of Hole Size Change in Lower-Support-Structure-Bottom Plate on the Reactor Core-Inlet Flow-Distribution (하부지지구조물 바닥판 구멍크기 변경이 원자로 노심 입구 유량분포에 미치는 영향에 관한 수치해석)

  • Lee, Gong Hee;Bang, Young Seok;Cheong, Ae Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.11
    • /
    • pp.905-911
    • /
    • 2015
  • In this study, to examine the effect of a hole size change(smaller hole diameter) in the outer region of the lower-support-structure-bottom plate(LSSBP) on the reactor core-inlet flow-distribution, simulations were conducted with the commercial CFD software, ANSYS CFX R.15. The predicted results were compared with those of the original LSSBP. Through these comparisons, it was concluded that a more uniform distribution of the mass flow rate at the core-inlet plane could be obtained by reducing the hole size in the outer region of the LSSBP. Therefore, from the nuclear regulatory perspective, design change of the hole pattern in the outer region of the LSSBP may be desirable in terms of improving both the mechanical integrity of the fuel assembly and the core thermal margin.

Cross Flow Characteristics of the Core Simulator in SMART Reactor Flow Distribution Test Facility (SMART 유동분포시험장치 노심모의기에서의 횡방향 유동 특성)

  • Yoon, Jung;Kim, Young-In;Chung, Young-Jong;Lee, Won-Jae
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.4
    • /
    • pp.5-11
    • /
    • 2012
  • To identify the flow characteristics of the SMART reactor, a flow distribution model test and a numerical simulation are performed in KAERI. Among several part of the SMART reactor, the fuel assemblies are simulated using simulators because of the complexity. The geometries of the core in the SMART reactor and simulator are different, but some similarities are maintained such as the ratio of pressure drop in the vertical and cross directions. There are cross flow holes in each core simulator to reproduce the cross flow of SMART fuel assemblies. To know the flow characteristics of the cross flow, numerical analysis is performed. As the cross flow area is decreased, the pressure drop between inlet and outlet is decreased. Also, when the flow imbalance between two core simulators is constant, the cross flow area does not significantly affect the cross flow.

Fuelcell GDL used in the high conductance of the carbon fiber surface treatment (연료전지 기체확산층용 고전도성 탄소섬유 표면처리 연구)

  • Baek, Sunghwan;Kim, Taejin;Kim, Jingu;Lee, Yohan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.131.1-131.1
    • /
    • 2010
  • 고분자연료전지(PEMFC)에서 기체확산층(GDL)은 다공성의 카본 종이/천 위에 마이크로한 다공층을 가치는 구조로 촉매층을 지지하고 촉매층과 분리판 사이의 전류전도체 역할을 한다. 또한 촉매층에 연료와 공기 확산 및 생성된 물의 통로 역할을 하며 소수성인 전기전도성 물질로 이루어져 있다. 현재 연료전지에 쓰이는 가스확산층은 대부분 국외 회사에서 제조 수입 사용하는 현황이고 국내에서는 협진 I&C가 연구하고 있으나 상용화는 아직 이루어지지 않고 있다. 본 연구는 탄소섬유의 전도성을 개선하고자 탄소섬유 표면에 금속코팅 시 최적의 접촉계면유지를 위한 표면처리 방법 및 공정을 조사 분석 후 최적 개선방법(농도/온도/압력/시간)을 설정하고자 하였다. 또한 선정된 공정인자별 수준별 시험 후 샘플링 된 시료를 토대로 금속물질이 탄소섬유 표면에 코팅(도금)된 금속-탄소섬유를 대하여 평가하여 최적화시키고자 탄소섬유로부터 carbon paper GDL의 모재를 개발할 계획이다. 앞에서 설명한 바와 같이 탄소섬유를 이용하여 paper making, resin impregnation, molding, carbonization/graphitization의 제조공정을 거쳐 paper형태의 GDL을 생산 및 평가하고자 하였다.

  • PDF

Effects of Slot Configurations on the Passive Control of Oblique-Shock-Interaction Flows (슬롯 형상이 경사충격파 간섭유동의 피동제어에 미치는 영향에 관한 연구)

  • Jang, Seong-Ha;Lee, Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.12
    • /
    • pp.18-24
    • /
    • 2006
  • Passive control of the shock wave/turbulent boundary-layer interaction utilizing slotted plates and a porous plate over a cavity has been carried out. Effect of various slot configurations on the characteristics of the interaction has been observed. Pitot/wall surface pressure distributions and flow visualizations including Schlieren images, kerosene-lampblack tracings and interference fringe patterns over a thin oil-film have been obtained at the downstream of the shock interactions. For the streamwise-slot configuration, a local higher pitot pressure was noticed at the downstream of the interaction as compared with the case of no control, however, not much improvement in pitot pressure was observed for the spanwise-slot configuration.

An Experimental Study on the Effects of Porous Layer Treatment on Evaporative Cooling of an Inclined Surface (다공물질 표면처리가 경사판의 증발냉각에 미치는 영향에 관한 실험적 연구)

  • Lee Dae Young;Lee Jae Wan;Kang Byung Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.1
    • /
    • pp.25-32
    • /
    • 2005
  • Falling film heat transfer has been widely used in many applications in which heat and mass transfer occur simultaneously, such as evaporative coolers, cooling towers, absorption chillers, etc. In such cases, it is desirable that the falling film spreads widely on the surface forming thin liquid film to enlarge contact surface and to reduce the thermal resistance across the film and/or the flow resistance to the vapor stream over the film. In this work, the surface is treated to have thin porous layer on the surface. With this treatment, the liquid can be spread widely on the surface by the capillary force resulting from the porous structure. In addition to this, the liquid can be held within the porous structure to improve surface wettedness regardless of the surface inclination. The experiment on the evaporative cooling of an inclined surface has been conducted to verify the effectiveness of the surface treatment. It is measured that the evaporative heat transfer increases about $50\%$ by the porous layer treatment as compared with that from orignal bare surfaces.

A Study on the Design of MCFC Off-Gas Catalytic Combustor (MCFC Off-gas 촉매연소기 설계에 관한 연구)

  • Lee, Sang-Min;Lee, Young-Duk;Ahn, Kook-Young;Hong, Dong-Jin;Kim, Man-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.406-412
    • /
    • 2007
  • An experimental study on the design of a catalytic combustor for 1.6 kW MCFC system has been performed. The roles of the catalytic combustor are to completely burn anode off-gas and to supply sufficient $CO_2$ to cathode channels. In order to avoid hot spot or fuel slippage, flow uniformity at the catalyst inlet was achieved by installing two crossing perforated plates between the catalyst and the mixing chamber with minimal pressure drop. A Pd/Ce/Ni-$Al_2O_3$ catalyst was used for complete combustion of the off-gas at GHSV=36,000.