• 제목/요약/키워드: 다공질 세라믹

검색결과 93건 처리시간 0.019초

분상법을 이용한 봉규산염계 다공질 유리의 제조 및 특성;$ZrO_2$와 MgO 첨가 영향 (Preparation and Characterization of Porous Glass in $Na_2O-B_2O_3-SiO_2$ System ; Addition Effects of $ZrO_2$ and MgO)

  • 김영선;최세영
    • 한국세라믹학회지
    • /
    • 제32권3호
    • /
    • pp.385-393
    • /
    • 1995
  • Akali-resistant porous glass was prepared by phase separation in Na2O-B2O3-SiO2 system containing ZrO2 and MgO. ZrO2 was added for alkali-resistance and MgO for anti-cracking during leaching. Optimal content of ZrO2 for alkali-resistance was 7wt% and devitrification by heat treatment resulted from further addition. Pore size and pore volume were decreased and specific surface area was increased with ZrO2 addition due to depression in phase separation. Addition of 3mol% MgO to mother glass containing 7wt% ZrO2 was effective for anti-crack during leaching. In this case, with phase separation at 55$0^{\circ}C$ and 5$25^{\circ}C$ for 20 hrs. crack-free porous glasses could be prepared. The relation between pore size r and heat treatment time t at 55$0^{\circ}C$ was D=25.58+18.16t. According to measurement of gas permeability, the mechanism of gas permeation was Knudsen flow. N2 and He permeability of porous glass which was prepared by heat treatment at 55$0^{\circ}C$ for 20 hrs. were 0.843$\times$10-7mol/$m^2$.s.Pa and 2.161$\times$10-7mol/$m^2$.s.Pa respectively.

  • PDF

$CaO-TiO_2-P_2O_5$계 다공질 결정화 유리의 물성에 미치는 알카리 금속 산화물의 첨가효과 (Addition Effects of Alkali Metal Oxide on Some Properties of Porous Glass-Ceramics in the $CaO-TiO_2-P_2O_5$ System)

  • 장순규;최세영
    • 한국세라믹학회지
    • /
    • 제31권11호
    • /
    • pp.1337-1345
    • /
    • 1994
  • Glasses in the system of 45CaO-25TiO2-30P2O5 containing 1 mole% of M2O(M=Li, Na, K) were melted and crystallized. And their crystal phases were Ca3(PO4)2, CaTi4(PO4)6, and TiO2. Porous glass-ceramics with skeleton of two crystal phase CaTi4(PO4)6 and TiO2 were prepared by selective leaching of Ca3(PO4)2 with 0.1 N-HCl. Glass transition temperature(Tg) and crystallization temperature(Tc) were decreased by addition of 1 mole% alkali metal oxide. Pore size of porous glass-ceramics was increased with increasing heat treatment temperature and its dependence on heat treatment temperature was decreased with addition of Na2O and K2O. It was found that porous glass-ceramics of parent glass and containing 1mole% M2O(M=Li, Na, K) composition had maximum specific surface area, porosity and maximum of crystallzed phase by heat treatment at 80$0^{\circ}C$, 76$0^{\circ}C$, 78$0^{\circ}C$, 80$0^{\circ}C$ respectively.

  • PDF

석탄회의 재활용을 통한 다공질 뮬라이트 복합체의 제조 (Preparation of Porous Mullite Composites through Recycling of Coal Fly Ash)

  • 김원영;지형빈;양태영;윤석영;박홍채
    • 한국세라믹학회지
    • /
    • 제47권2호
    • /
    • pp.151-156
    • /
    • 2010
  • Porous mullite/alumina composites have been fabricated by a freeze casting technique using TBA-based coal fly ash/alumina slurry. After sintering, unidirectional macropore channels aligned regularly along the TBA ice growth direction were developed; simultaneously, small sized micropores fromed in the outer walls of the pore channels. The physical and mechanical properties (e.g. porosity and compressive strength) of the sintered porous composites were roughly dependant of processing conditions, due to the complexity of the factors affecting them. However, with increasing solid loading and sintering temperature, the compressive strength generally increased and the porosity decreased. After sintering $1500^{\circ}C$ for 2 h, the porous specimen (porosity: 52.1%) showed a maximum compressive strength of 70.0 MPa.

일축배향 기공채널과 향상된 압축강도를 갖는 다공질 알루미나/뮬라이트 층상 복합체 (Porous Alumina/Mullite Layered Composites with Unidirectional Pore Channels and Improved Compressive Strength)

  • 김규헌;김태림;김동현;윤석영;박홍채
    • 한국세라믹학회지
    • /
    • 제51권1호
    • /
    • pp.19-24
    • /
    • 2014
  • Three-layer porous alumina-mullite composites with a symmetric gradient porosity are prepared using a controlled freeze/gel-casting method. In this work, tertiary-butyl alcohol (TBA) and coal fly ash with an appropriate addition of $Al_2O_3$ were used as the freezing vehicle and the starting material, respectively. When sintered at $1300-1500^{\circ}C$, unidirectional macro-pore channels aligned regularly along the growth direction of solid TBA were developed. Simultaneously, the pore channels were surrounded by less porous structured walls. A high degree of solid loading resulted in low porosity and a small pore size, leading to higher compressive strength. The sintered porous layered composite exhibited improved compressive strength with a slight decrease in its porosity. After sintering at $1500^{\circ}C$, the layered composite consisting of outer layers with a 50 wt% solid loading showed the highest compressive strength ($90.8{\pm}3.7MPa$) with porosity of approximately 26.4%.

뼈 대체용 생체활성 다공질 세라믹스의 제조 및 특성 (Fabrication and Properties of Bioactive Porous Ceramics for Bone Substitution)

  • 이락형;하정수
    • 한국세라믹학회지
    • /
    • 제45권10호
    • /
    • pp.584-588
    • /
    • 2008
  • Porous hydroxyapatite(HA) and HA-coated porous $Al_2O_3$ possessing pore characteristics required for bone substitutes were prepared by a slurry foaming method combined with gelcasting. The HA coating was deposited by heating porous $Al_2O_3$ substrates in an aqueous solution containing $Ca^{2+}$ and ${PO_4}^{3-}$ ions at $65{\sim}95^{\circ}C$ under ambient pressure. The pore characteristic, microstructure, and compressive strength were investigated and compared for the two kinds of samples. The porosity of the samples was about 81% and 80% for HA and $Al_2O_3$, respectively with a highly interconnected network of spherical pores with size ranging from 50 to $250{\mu}m$. The porous $Al_2O_3$ sample showed much higher compressive strength(25 MPa) than the porous HA sample(10 MPa). Fairly dense and uniform HA coating(about $2{\mu}m$ thick) was deposited on the porous $Al_2O_3$ sample. Since the compressive strength of cancellous bone is $2{\sim}12$ MPa, both the porous HA and HA-coated porous $Al_2O_3$ samples could be successfully utilized as scaffolds for bone repair. Especially the latter is expected suitable for load bearing bone substitutes due to its excellent strength.

Frit 함량이 다공질 Frit-Bonded 알루미나 세라믹스의 미세조직과 꺾임강도에 미치는 영향 (Effect of Frit Content on Microstructure and Flexural Strength of Porous Frit-Bonded Al2O3 Ceramics)

  • 임광영;김영욱;송인혁;김해두;배지수
    • 한국세라믹학회지
    • /
    • 제47권6호
    • /
    • pp.529-533
    • /
    • 2010
  • Porous frit-bonded alumina ceramics were fabricated using alumina and frit as raw materials. The effects of frit content and sintering temperature on microstructure, porosity, and flexural strength were investigated at low temperature of $750{\sim}850^{\circ}C$. Increased addition of frit content or higher sintering temperature resulted in improved flexural strength of porous frit-bonded alumina ceramics. It was possible to produce frit-bonded alumina ceramics with porosities ranging from 35% to 40%. A maximum strength of 52MPa was obtained at a porosity of ~38% when 90 wt% alumina and 10 wt% frit powders were used.

기공형성제 함량이 다공질 Mullite-Bonded SiC 세라믹스의 미세구조와 강도에 미치는 영향 (Effect of Template Content on Microstructure and Flexural Strength of Porous Mullite-Bonded Silicon Carbide Ceramics)

  • 최영훈;김영욱;우상국;한인섭
    • 한국세라믹학회지
    • /
    • 제47권6호
    • /
    • pp.509-514
    • /
    • 2010
  • Porous mullite-bonded SiC (MBSC) ceramics were fabricated at temperatures ranging from 1400 to $1500^{\circ}C$ for 2 h using silicon carbide (SiC), alumina ($Al_2O_3$), strontium oxide (SrO), and poly (methyl methacrylate-coethylene glycol dimethacrylate) (PMMA) microbeads. The effect of template content on porosity, pore morphology, and flexural strength were investigated. The porosity increased with increasing the template content at the same sintering temperature. The flexural strength showed maximum after sintering at $1450^{\circ}C$/2 h for all specimens due to small pores and dense strut. By controlling the template content and sintering temperature, it was possible to produce porous MBSC ceramics with porosities ranging from 30% to 54%. A maximum flexural strength of ~51MPa was obtained at 30% porosity when no template were used and specimens sintered at $1450^{\circ}C$/2 h.

Si:C Ratio가 다공질 Self-Bonded SiC 세라믹스의 기공율과 곡강도에 미치는 영향 (Effect of Si:C Ratio on Porosity and Flexural Strength of Porous Self-Bonded Silicon Carbide Ceramics)

  • 임광영;김영욱;우상국;한인섭
    • 한국세라믹학회지
    • /
    • 제45권5호
    • /
    • pp.285-289
    • /
    • 2008
  • Porous self-bonded silicon carbide (SiC) ceramics were fabricated at temperatures ranging from 1750 to $1850^{\circ}C$ using SiC, silicon (Si), and carbon (C) powders as starting materials. The effect of the Si:C ratio on porosity and strength was investigated as a function of sintering temperature. It was possible to produce self-bonded SiC ceramics with porosities ranging from 36% to 43%. The porous ceramics showed a maximal porosity when the Si:C ratio was 2:1 regardless of the sintering temperature. In contrast, the maximum strength was obtained when the ratio was 5:1.

탄소 원료가 다공질 Self-Bonded SiC (SBSC) 세라믹스의 기공율과 곡강도에 미치는 영향 (Effect of Carbon Source on Porosity and Flexural Strength of Porous Self-Bonded Silicon Carbide Ceramics)

  • 임광영;김영욱;우상국;한인섭
    • 한국세라믹학회지
    • /
    • 제45권7호
    • /
    • pp.430-437
    • /
    • 2008
  • Porous self-bonded silicon carbide (SBSC) ceramics were fabricated at temperatures ranging from 1700 to $1850^{\circ}C$ using SiC, silicon (Si), and three different carbon (C) sources, including carbon black, phenol resin, and xylene. The effects of the Si:C ratio and carbon source on porosity and strength were investigated as a function of sintering temperature. Porous SBSC ceramics fabricated from phenol resin showed higher porosity than the others. In contrast, porous SBSC ceramics fabricated from carbon black showed better strength than the others. Regardless of the carbon source, the porosity increased with decreasing the Si:C ratio whereas the strength increased with increasing the Si:C ratio.

상분리법에 의한 다공질 유리막의 제조 (Preparation of Porous Glass Membranes by the Phase-Separation Technique)

  • 현상훈;최봉호
    • 한국세라믹학회지
    • /
    • 제25권1호
    • /
    • pp.59-65
    • /
    • 1988
  • To develop porous glass membranes used for a effective membrane-separation process, porous glasses and glass membranes were prepared from the sodium borosilicate parent glass by the phaseseparation technique and effects of heat-treatment and leaching conditions on their characteristics were investigated. The crack-free glass membranes could be fabricated from the 9.4 Na2-O-30.7 B2O3-59.2 SiO2-0.7 Al2O3(wt%) parent glass by heat-treatment at the lower temperature(550-570$^{\circ}C$) and for longer than 45 hrs for the phase separation, followed by leaching with 3N-HCl+60% ethylene glycol solution at 90$^{\circ}C$ over 25 hrs. Porous glasses prepared in this work showed large specific surface areas(400㎡/g) and narrow pore size distribution with the mean pore radius of 14${\AA}$ enough for the application as reverse osmosis membranes. The salt-rejection efficiency and product-flux of the glass membranes heat-treated at 570$^{\circ}C$ for 80 hrs were found to be 51.8% and 270cc/㎡. hr, respectively. This result suggests that the porous glass membranes fabricated in this study could be applied for the reverse osmosis process.

  • PDF