본 연구에서는 다공질 흡음재료 중 closed cell 구조를 갖는 발포수지재료(Foamed Material)에 음(sound)이 입사할 때 발생하는 흡음현상을 보다 정확히 예측하기 위해서 다공질 흡음재료에 대한 Biot 이론에 근거한 Allard의 모델링기법[4]을 이용하여 해석 프로그램을 개발하였고, 이를 이용하여 다공질 흡음재료가 단층(single layer)일 때 이 재료의 Surface Impedance와 흡음률(Absorption Coefficient)을 예측하고, 물성치(parameters)변화에 따른 다공질 흡음재료의 흡음특성을 분석하였으며, 이 재료가 자동차 제조시 사용되는 압연강판(rolled steel piate)에 부착되었을 때의 투과손실(Transmission Loss)을 예측하였고, 또한 다공질 흡음재료는 중고주파 대역의 음에 대한 흡음특성은 좋지만 저주파 대역의 음에 대한 흡음특성은 좋지 않으므로 흡음 재료의 저주파 대역의 흡음특성을 향상시키기 위해서 2층(two layers)으로 하였을 때의 흡음특성을 분석하였다. 본 논문의 연구결과는 자동차 제조시 사용되어지는 다공질 흡음재료는 물론 산업용기계나 건축용등 여러 분야에서 사용되어지는 다공질 흡음재료의 흡음특성 분석에 응용될 수 있으리라 기대된다.
본 논문에서는 다공질 실리콘에 대한 에탄올과 메탄을 가스 감지 특성을 측정하고 전기 전도도의 변화를 고찰하였다. 우선 HF와 에탄올의 혼합 용액내에서 n-type의 웨이퍼에 일정 전압을 인가하여 다공질 실리콘을 형성한다. 다공질 실리콘은 수직한 방향으로 $55{\sim}60{\mu}m$ 두께로 균일하게 형성되었다. 다공질 실리콘을 이용하여 소자를 제작하고 에탄올과 메탄올 가스를 주입하여 전류-전압 특성을 측정하였다. 기존의 다공질 실리콘 에탄올 센서와는 달리 turn-on 시 센서에 흐르는 전류가 빠른 시간내에 일정한 값으로 도달하였고 turn-off시에도 같은 결과를 보였다. 다공질 실리콘 표면에 흡착된 에탄올과 메탄올 가스는 전류의 흐름을 방해하는 surface charge를 스크린하여 전기 전도도를 증가시킨다. 또한 흡착된 가스가 dangling bonds를 passivation하여 전류를 증가시키는 것으로 생각된다.
금속을 용해 응고시킬 때 생성되는 소위, 주조 결함이나 소결금속 내의 기공은 재료의 성능이나강도를 현저하게 낮추는 결함으로서 예전부터 기피되어 왔다. 또한, 재료공정에있어서도 여하의 기공이나 기포가 없는 치밀한 고강도 및 고기능성 재료를 개발하는 것에 최대한의 주의와 관심을 기울여 왔다. 그렇지만, 우리가 자연계의 천연물이나 인공물을 둘러보면 그 대부분이다공질임을 쉽게 눈치챌 수 있다. 예를 들어 목재, 지엽등의 생물을 시작해서 콘크리트 등의 인공물, 우리 체내의 뼈도 전형적인 다공질구조로 구성되어 있다. 이러한 구조로부터 재료의 재질제어 이외에 구조제어라는 새로운 어프로치를 고려할 수 있고, 최근 들어, 금속재료에 있어서도 이러한 다공질구조에 관한 연구가활성화되어 충격흡수재, 생체재료, 베어링재료 등의 다양한응용이 전개되고 있다. 특히, 원주상의 방향성 기공을 갖는 로터스금속은 기존의 복잡한구조의 다공질금속보다 뛰어난 기계적 성질을 갖는다. 이러한 다공질금속은 일방향응고할 때 생성하는 과포화가스원자를 석출시켜 기공을 일방향으로 성장시킨다. 즉, 융점에서의 고상과 액상의 가스 용해도 차를 이용하는 것으로서 응고시에 고용할 수 없는 가스원자가 기공을 형성한다. 이와같이 제조한 방향성 다공질금속은 BT (인플란트, 생체적합성, 저탄성, 경량), ST (초음속기엔진부품, 경량), IT (고성능수냉모듈), ET(고온촉매, 필터)의 분야로의 응용이 기대된다. 본 강연에서는 방향성 다공질금속의 제조법, 특성 및 응용을 포함하여그 동안의 연구성과 및 앞으로의 과제 등을 소개하고자 한다.
단결정규소 웨이퍼를 15% HF-에탄올 용액에서 양극 산화시켜 다공질규소를 얻는 과정에서 전류밀도와 에칭시간에 따라 굴절률이 주기적으로 변하는 다층의 다공질규소층(porous silicon multilayers)을 구현하였다. 그리고 다층의 다공질규소층(I), 다공질규소 발광층, 또 다른 다층의 다공질규소층(II)의 순으로 구성된 porous silicon microcavity(PSM)를 제작하고 그 물성을 조사하였다. PSM 상하에 위치한 다층의 다공질규소층의 단면을 AFM(Atomic Force Microscope)으로 조사한 결과 고굴 절률과 저굴절률이 주기적으로 교차하는 층이 균일하게 형성되었으며, 중앙의 다공질규소 발광층도 균일하게 나타났다. 다층의 다공질규소층 및 다공질규소 발광층의 두께를 각각 실효파장의 1/4배 및 2배가 되도록 하였을 때 특정파장의 필터로 쓰일 수 있는 브래그 반사경(Bragg reflector)의 특성이 나타났다. 또한 PSM의 발광 스펙트럼은 그 반치폭이 현저히 감소하고 발광의 세기가 크게 증가되는 경향을 보였다.
본 연구에서는 Kim등이 제안한 다공질금속을 위한 특수 구성방정식을 바탕으 로 하여 인장/비틀림 조합하중하의 다공질금속의 탄성-소성변형을 위한 구성방정식을 제시하였다. 탄성거동에서는 기공의 영향을 고려한 일반화된 Hooke의 법칙을 사용하 였고, 탄성-소성거동은 변형률공간을 주공간으로 하여 Naghdi등에 의해 개발된 탄성- 소성변형의 구성이론을 수정하여 다공질고체에 적용하였다. 끝으로, 본 논문에서 제 안된 구성이론은 Kim등과 본 연구에서 구한 인장/비틀림의 조합하중하에서의 다공질 철 소결체의 소성 항복조건 및 탄성-소성 거동의 실험치와 비교하였다.
용융 Si 침윤 방법에 의한 새로운 다공질 RBSC 제조공정이 개발되었으며, 용융 Si 침윤공정 방법으로 제조된 다공질 RBSC의 최대 3-점 파괴 강도는 18 MPa, 최대 기공율은 46% 범위이었다. 용융 Si 침윤방법으로 제조된 다공질 RBSC의 기계적 특성 및 기공율은 성형체내 SiC 입자 표면의 카본 source의 양 및 침윤시 사용된 Si의 양에 직접적으로 영향을 받는 것으로 나타났다. 침윤시 상대 Si 양은 40%를 사용하였으며, SiC 입자 표면에 graphite와 phenol resin을 함께 코팅한 성형체를 사용하여 제조된 다공질 RBSC에서 최대 파괴강도 값을 얻었다. 상대 Si의 양의 증가는 다공질 RBSC의 파괴강도를 감소시켰으며, SiC 입자 표면의 카본 source 코팅층은 graphite와 phenol resin을 같이 사용하였을 때 다공질 RBSC의 파괴강도는 증가되었으나, RBSC 내 기공율은 감소되었다.
다공질 매체의 거동은 선형 열역학적 다공 탄성 거동, 선형 다공 점성-탄성 거동, 다공소성 거동, 그리고 다공 점성-소성 거동 등으로 모형화가 된다. 또한 시간에 따라 그 거동 양상이 복합적인 형태를 띈다. 다공질 매체는 간극 속의 구성물들이 서로 상대속도를 가지며 상호 작용을 하기 때문에 coupling 효과를 고려한 다공질 매체의 변형 거동에 대한 구성모델의 개발이 필수적이다. 본 논문에서는 균질하고 등방성을 가진 재료들로 이루어진 다공질 매체의 3차원적인 거동을 포화도에 따라 완전 포화시와 부분 포화시로 나누어 연속체 다공 역학의 뼈대 위에 지배방정식들을 구한다. 또한 다공질 매체의 거동을 이해하고 해석할 수 있는 구성모델을 개발할 수 있는 토대를 마련한다. 본 연구가 확장될 경우 다공질 매체의 정확한 거동 해석과 변형량 예측이 이루어질 수 있을 것이다. 특히 도시 고형화 폐기물 매립지반의 3차원적인 거동을 해석할 수 있는 기초가 마련되어 비균질하고 이방성을 가진 재료들로 이루어진 다공질 매체 지반의 활용이 활발하게 이루어 질 것으로 기대된다.
본 논문은 다공질 실리콘 다이어프램에 대한 화학 센서의 일종인 습도, 에탄올, 메탄올의 감지 특성을 측정하고 전기 전도도의 변화를 고찰하였다. 먼저, TMAH 용액으로 실리콘 다이어프램을 제작한 후, HF와 에탄올의 혼합 용액내에서 일정 전압을 인가하여 다공질 실리콘 다이어프램을 형성하였다. 다공질 실리콘을 면(100)에 수직한 방향으로 $50{\sim}100{\mu}m$ 두께로 균일하게 형성하여 p+-PSi-n+ 구조의 소자를 제작하였다. 다공질 실리콘 다이어프램의 절대습도에 대한 감도는 입력 주파수 5kHz에서 인가 전압이 $2{\sim}6$Vpp에서 $376.3{\sim}784.8{\Omega}$/%RH으로 변하였다. 또, 인가 전압 6Vpp에서 입력 주파수가 $2{\sim}5$kHz으로 변할 때 $393.3{\sim}784.8{\Omega}$/%RH으로 변하였다. 또한, 에탄올에 대한 감도는 $0.068{\mu}A$/%이며, 메탄올은 $0.212{\mu}A$/%으로 다공질 실리콘 다이어프램은 에탄올 보다 메탄올이 더 민감하게 반응하였다. 일반적으로 다공질 실리콘의 전기전도도는 charged surface traps과 screening effect에 의존한다.
플라즈마 분자선 에피택시(plasma-assisted molecular beam epitaxy)법을 이용하여 다공질 실리콘(porous silicon)에 ZnO 박막을 성장하였다. 성장 후, 아르곤 분위기에서 10분 간 다양한 온도(500~700$^{\circ}C$)로 열처리하였다. 다공질 실리콘 및 열처리 온도가 ZnO 박막의 특성에 미치는 영향을 scanning electron microscopy (SEM), X-ray diffraction (XRD), photoluminescence (PL)을 이용하여 분석하였다. 실리콘 기판에 성장된 ZnO 박막은 일반적은 섬구조(island structure)로 성장된 반면, 다공질 실리콘에 성장된 ZnO 박막은 산맥과 같은 구조(mountain range-like structure)로 성장되었다. 열처리 온도가 증가함에 따라 ZnO 박막의 grain size는 증가하였다. 실리콘 기판 위에 성장된 ZnO 박막은 wurtzite 구조를 나타내는 여러 개의 회절 피크가 관찰된 반면, 다공질 실리콘에 성장된 ZnO 박막은 c-축 배향성(c-axis preferred orientation)을 나타내는 ZnO (002) 회절 피크만이 나타났다. 다공질 실리콘에 성장된 ZnO 박막의 구조적 및 광학적 특성이 실리콘 기판에 성장된 ZnO 박막의 특성보다 우수하게 나타났다. 뿐만 아니라, 열처리 온도가 증가함에 따라 다공질 실리콘에 성장된 ZnO 박막의 PL 강도비(intensity ratio)가 실리콘 기판에 성장된 ZnO 박막의 강도비보다 월등하게 증가하였다.
다공질 실리콘을 대기에 노출시켰을 때 시간이 경과하면, 초기의 발광 특성이 변화하는 aging effect가 있다. 다공질 실리콘을 광 센서로 사용하기 위해서는 대기 중에 노출한 후 시간이 경과해도, 동일한 파장을 유지하여야 한다. 본 논문에서는 기체의 투과성이 낮고, 빛을 잘 투과시키는 폴리머들을 이용하여 다공질 실리콘 표면에 보호막으로 코팅하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.