• Title/Summary/Keyword: 능동위상배열

Search Result 130, Processing Time 0.03 seconds

Effect of a Finite Substrate Size on the Radiation Characteristics of Two-Element Linear E-plane Array Antennas (유한한 기판 크기가 2소자 E-평면 선형 배열 안테나의 방사 특성에 미치는 영향)

  • Yoon, Young-Min;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.95-110
    • /
    • 2012
  • The effect of a finite substrate size on the radiation characteristics of a two-element linear E-plane array antenna using microstrip patch antennas is investigated. The average active element pattern characteristics of two-element E-plane array antennas printed on different dielectric constant substrates with various substrate sizes and element spacings are analyzed. Using the average active element pattern, the radiation pattern characteristics of the array antenna versus scan angle is analyzed. The simulation results show that the diffracted fields of surface waves from substrate edges have a significant effect on the radiation characteristics of a 2-element E-plane array antenna. The distance between the center of patch antenna and the substrate edges on the E-plane for the enhancement of radiation characteristics of the array antenna is about $0.35{\lambda}_0$.

X-band Compact Digital Phase Shifter Design (X 대역 소형 디지털 위상 천이기 설계)

  • 엄순영;전순익;육종관;박한규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.9
    • /
    • pp.907-915
    • /
    • 2002
  • In this paper, a compact digital phase shifter to be used an active phased array antenna system for satellite communications was proposed. The even and odd mode analysis for a given reflection-type phase shifter, which uses a folded hybrid coupler as a base element, was performed and the design parameters were derived. Also, to verify experimentally the electrical performances of the proposed structure, X-band 4-bit digital phase shifter was designed and fabricated using Teflon soft substrate $({\varepsilon}_r; =\;2.17)$. Its circuit size was less than 3.5 cm $\times$ 3.0 cm, and it exhibited at least 50 % size reduction as compared with the conventional unfolded configuration. The experimental results of the fabricated phase shifter showed that the average insertion loss and insertion loss variation were less than 3.5 dB, $\pm$ 0.6 dB within the operating band, 7.9 ~ 8.4 GHz, respectively. And, input and output return loss were more than 10 dB, respectively. Also, the phase response of the phase shifter showed 4-bit operation with $\pm$3$^{\circ}$ rms phase error.

Novel Mobile Satellite Communication Antenna Design Based on Shaped-Reflector (새로운 성형 반사판 기반의 이동 위성 통신 안테나 설계)

  • Jung, Young-Bae;Park, Seong-Ook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.8
    • /
    • pp.826-831
    • /
    • 2008
  • This paper presents hybrid antenna(HA) design based on shaped reflector for mobile satellite communication. HA is composed of a shaped reflector and a feeder having $1{\times}8$ linear phased array, and reflector shaping method is applied for the performance optimization with minimum aperture size. And, in the feeder design, HA has another merit to minimize the manufacturing cost by optimizing the number of element. Proposed HA is designed at Ka-band and can electrically control a beam pattern within ${\pm}3^{\circ}$ in the basic angle of $+45^{\circ}$ in elevation. This antenna is designed to meet ITU-R S.465-5 for beam pattern including side-lobe level.

Satellite Communication Microstrip 8X2 Away Antenna for TX / RX Dual Operation at Ku-band (Ku 대역 위성통신 송수신 겸용 마이크로스트립 8X2 배열 안테나)

  • 윤재승;전순익;최재익;채종석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.6
    • /
    • pp.574-581
    • /
    • 2002
  • Microstrip $8{ imes}2$ sub-array antennas for a extension to active phased array antennas are designed, fabricated and measured for TX/RX dual operation in satellite communication and a reception of satellite broadcasting. For the frequency range from 11.7 to 12.75 GHz for RX and from 14 to 14.5 GHz for TX, two orthogonal linear polarizations of ${pm}45^{\circ}$ are used to transmit and receive simultaneously with one radiator. They adopt dual resonance between two patches for wideband characteristics in RX band and show isolation characteristics over 20 dB. An electrical beam tilt of $30^{\circ}$ is achieved and a tapered power distribution, narrow element spacing are used for the purpose of low side-lobe characteristics.

Development of High Voltage, High Efficiency DC-DC Power Module for Modern Shipboard Multi-Function AESA Radar Systems (함정용 다기능 AESA 레이더 시스템을 위한 고전압·고효율 DC-DC 전원모듈 개발)

  • Chong, Min-Kil;Lee, Won-Young;Kim, Sang-Keun;Kim, Su-Tae;Kwon, Simon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.50-60
    • /
    • 2021
  • For conventional AESA radars, DC-DC power modules using 300 Vdc have low efficiency, high volume, heavy weight, and high price, which have problems in modularity with T/R module groups. In this paper, to improve these problems, we propose a distributed DC-DC power module with high-voltage 800 Vdc and high-efficiency Step-down Converter. In particular, power requirements for modern and future marine weapons systems and sensors are rapidly evolving into high-energy and high-voltage power systems. The power distribution of the next generation Navy AESA radar antenna is under development with 1000 Vdc. In this paper, the proposed highvoltage, high-efficiency DC-DC power modules increase space(size), weight, power and cooling(SWaP-C) margins, reduce integration costs/risk, and reduce maintenance costs. Reduced system weight and higher reliability are achieved in navy and ground AESA systems. In addition, the proposed architecture will be easier to scale with larger shipboard radars and applicable to other platforms.

A Design of X-Band Tile Type Active Transmit/Receive Module (X 대역 타일형 능동 송수신 모듈 설계)

  • Ha, Jung-Hyen;Moon, Ju-Young;Lee, Ki-Won;Nam, Byung-Chang;Yun, Sang-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.12
    • /
    • pp.1467-1474
    • /
    • 2010
  • A tile type active T/R(Transmit/Receive) module for X-band active array radar is demonstrated in this paper. Proposed tile type structure based on fuzz button solderless vertical interconnection shows wide band characteristic of about 30 % bandwidth in X-band with insertion loss of below 0.6 dB and input and output VSWR of less than 1.7. Moreover, the mismatching generally appeared in the vertical interconnection which shown wide band characteristic can also be minimized and, therefore, good gain flatness can be achieved.

A Study on S-Band Phased Array Antenna System for Receiving LEO Satellite Telemetry Signals (저궤도 위성 원격측정데이터 신호 수신을 위한 S-대역 위상배열안테나 시스템 연구)

  • Lee, Dong-Hyo;Seo, Jung-Won;Lee, Myoung-Sin;Chung, Daewon;Lee, Dongkook;Pyo, Seongmin
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.211-218
    • /
    • 2022
  • This paper presents a S-band phased array antenna system for receiving LEO satellite telemetry signals. The proposed antenna, which is performed to be beam-tiled along the elevation direction, consists of 16 sub-array assemblies, 16 active circuit modules, a perpendicular feed network and a control/power unit. In order to precisely track an LEO satellite, the developed antenna is placed with its elevation axis along the projected trajectory of the satellite on the earth. The center of antenna aperture is facing to the maximum elevation angle in the LEO trajectory. The beam-tilted angles for tracking LEO satellite are obtained by calculating accurately satellite points. Satellite tracking measurements are carried out in the range of ±30° with the respect to the maximum elevation angle. The S/N ratio of 16.5 dB and the Eb/No of 13.3 dB at the maximum elevation angle are obtained from the measurements. The measured result agrees well with the pre-analyzed system margin.

Radar Countermeasure and Effect Analysis for the Pull-Off Deceptive Jamming Signal (Pull-Off 기만 재밍 신호에 대한 레이다 대응기법 및 효과 분석)

  • Jang, Sunghoon;Kim, Seonjoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.221-228
    • /
    • 2020
  • This paper presents the radar counter jamming algorithm and ground far-field test results for the pull-off deceptive jamming signals like RGPO(Range Gate Pull Off) and VGPO(Velocity Gate Pull Off). We designed the radar counter jamming algorithm according to the characteristics of the deceptive jamming signals. This algorithm is validated by simulation before ground far-field test. The existing X-band AESA radar demonstrator was used to test the proposed algorithm. The proposed algorithm was applied to the radar processor software. The deceptive jamming signals generated using the commercial jamming signal generator. We performed the repeated ground far-field test with the test scenario. Test results show that the proposed counter deceptive jamming algorithm works in the real radar system.

Analysis on Heat Dissipation Characteristics of a Tile-Type Digital Transmitter/Receiver Module (적층형 디지털송수신모듈의 방열특성 분석)

  • Yoon, Kichul;Kim, Sangwoon;Heo, Jaehun;Kwak, Nojin;Kim, Chan Hong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.249-254
    • /
    • 2019
  • A Digital Transmitter/Receiver Module(DTRM), which is an essential part in active phased-array radar systems, generates a high heat density, and needs to be properly cooled for stable operation. A tile-type DTRM that is a stacking structure of multi-layer components was modeled with simplification and heat dissipation characteristics of the DTRM model were studied using computational fluid dynamics(CFD) simulations. Most of the heat was dissipated by the heat conduction through the cold plate, but the heat transfer by the forced convection on top of the DTRM also was found to play an important role in the thermal management. Under the given conjugated heat transfer environment, the DTRM was confirmed to secure a stable operating temperature range.

Active-Sensing Based Damage Monitoring of Airplane Wings Under Low-Temperature and Continuous Loading Condition (능동센서 배열을 이용한 저온 반복하중 환경 항공기 날개 구조물의 손상 탐지)

  • Jeon, Jun Young;Jung, Hwee kwon;Park, Gyuhae;Ha, Jaeseok;Park, Chan-Yik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.345-352
    • /
    • 2016
  • As aircrafts are being operated at high altitude, wing structures experience various fatigue loadings under cryogenic environments. As a result, fatigue damage such as a crack could be develop that could eventually lead to a catastrophic failure. For this reason, fatigue damage monitoring is an important process to ensure efficient maintenance and safety of structures. To implement damage detection in real-world flight environments, a special cooling chamber was built. Inside the chamber, the temperature was maintained at the cryogenic temperature, and harmonic fatigue loading was given to a wing structure. In this study, piezoelectric active-sensing based guided waves were used to detect the fatigue damage. In particular, a beamforming technique was applied to efficiently measure the scattering wave caused by the fatigue damage. The system was used for detection, growth monitoring, and localization of a fatigue crack. In addition, a sensor diagnostic process was also applied to ensure the proper operation of piezoelectric sensors. Several experiments were implemented and the results of the experiments demonstrated that this process could efficiently detect damage in such an extreme environment.