• Title/Summary/Keyword: 능동감쇠

Search Result 185, Processing Time 0.022 seconds

Energy Density Control for the Global Attenuation of Broadband Noise Fields (광대역 잡음의 전역 감쇠를 위한 에너지 밀도 제어)

  • Park, Young-Cheol;Yun, Jeong-Hyeon;Youn, Dae-Hee;Cha, Il-Whan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.21-32
    • /
    • 1996
  • The performance of the energy density control algorithm for controlling a broadband noise is evaluated in a one-dimensional enclosure. To avoid noncausality problem of a control filter, which often happens in a frequency domain optimization, analyses presented in this paper are undertaken in the time domain. This approach provides the form of the causally constrained optimal controller. Numerical results are presented to predict the performance of the active noise control system, and indicate that imp개ved global attenuation of the broadband noise can be achieved by minimizing the energy density, rather than the squared pressure. It is shown that minimizing the energy density at a single location yields global attenuation results that are comparable to minimizing the potential energy. Furthermore, unlike the squared pressure control, the energy density control does not demonstrate any dependence on the error sensor location for this one-dimensional field. A practical implementation of the energy-based control algorithm is presented. Results show that the energy density control can be implemented using the two sensor technique with a tolerable margin of performance degradation.

  • PDF

A GaAs MMIC Multi-Function Chip with a Digital Serial-to-Parallel Converter for an X-band Active Phased Array Radar System (X-대역 능동 위상 배열 레이더 시스템용 디지털 직병렬 변환기를 포함한 GaAs MMIC 다기능 칩)

  • Jeong, Jin-Cheol;Shin, Dong-Hwan;Ju, In-Kwon;Yom, In-Bok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.6
    • /
    • pp.613-624
    • /
    • 2011
  • An MMIC multi-function chip for an X-band active phased array radar system has been designed and fabricated using a 0.5 ${\mu}m$ GaAs p-HEMT commercial process. A digital serial-to-parallel converter is included in this chip in order to reduce the number of the control interface. The multi-function chip provides several functions: 6-bit phase shifting, 6-bit attenuation, transmit/receive switching, and signal amplification. The fabricated multi-function chip with a relative compact size of 24 $mm^2$(6 mm${\times}$4 mm) exhibits a transmit/receive gain of 24/15 dB and a P1dB of 21 dBm from 8.5 GHz to 10.5 GHz. The RMS errors for the 64 states of the 6-bit phase shift and attenuation were measured to $7^{\circ}$ and 0.3 dB, respectively over the frequency.

Seismic control of offshore platform using artificial neural network (인공신경망을 이용한 해양구조물의 지진시 진동제어)

  • Kim, Dong Hyawn;Kim, Ju Myung;Shim, Jae Seol
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.2
    • /
    • pp.175-181
    • /
    • 2009
  • An intelligent control technique using a neural network is proposed for offshore structures exposed to sea-bed earthquakes. Fluid-structure interaction effect was considered in developing controller and a training algorithm for the neural network is presented. In the numerical example, the performance of the proposed neural network controller was compared with that of a passive controller and uncontrolled structures. Based on the example, it can be concluded that the proposed neuro-control scheme can be used for offshore structures with nonlinear characteristics due to its interaction with fluid.

Optimal Design of Air-spring and Active Control of Vibration Isolation Table (공기스프링의 최적설계 및 방진 테이블의 능동 제어)

  • An, Chae-Hun;Kim, Ho-Sung;Yim, Kwang-Hyeok;Jin, Kyong-Bok;Rim, Kyung-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.909-914
    • /
    • 2006
  • Vibration isolation tables are mostly required in precise measurement and manufacturing system. Among the vibration isolation tables, an air spring is the most favorable equipment because of low resonant frequency and high damping ratio. However, it is difficult to design the air spring with the required stiffness and damping ratio. Futhermore, whenever conventional active control methods are applied to the air spring, it may be difficult to obtain effective control performance due to high nonlinearity of air spring. In this paper, the optimal design of the air spring is performed using genetic algorithm to bring out low resonant frequency and high damping ratio. Also, active control of the vibration isolation table with 3-DOF model is proposed using the adaptive control method. Through experiments, optimal design is shown to be effective. And performance of the proposed control method is verified to be better than those of the passive control method and the conventional active control methods.

  • PDF

A Double Loop Control Model Using Leaky Delay LMS Algorithm for Active Noise Control (능동소음제어를 위한 망각형 지연 LMS 알고리듬을 이용한 이중루프제어 모델)

  • Kwon, Ki-Ryong;Park, Nam-Chun;Lee, Kuhn-Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.28-36
    • /
    • 1995
  • In this paper, a double loop control model using leaky delay LMS algorithm are proposed for active noise control. The proposed double loop control model estimates the loudspeaker characteristic and the error path transfer function with on-line using only gain and acoustic time delay to reduce computation burden. The control of error signal through double loop control scheme makes the more robust cntrol system. The input signal of filter to estimate acoustic time delay is used difference between input signal of input microphone and adaptive filter output. And also, in nonstationary environments, the leaky delay LMS algorithm is employed to counteract parameter drift of delay LMS algorithm. For practical noise signal, the proposed double loop control model reduces noise level about 12.9 dB.

  • PDF

A Study on the Analysis and Development of Proportional Pressure Control Valve for Vehicle Active Suspension System via Hydraulics Actuator (유압 액추에이터를 고려한 능동 현가장치용 비례압력제어밸브의 해석과 개발)

  • 윤영환;장주섭;최명진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.111-121
    • /
    • 2000
  • Generally, the hydraulic pressures are used for transmitting the force. Therefore, a highly reliable and inexpensive control system has been required for a passenger car. The control-ability of active suspension system is strongly affected by the performance of pressure control valve in the view of dynamic response and energy consumption. In this study, we suggested main design parameters for the optimum design of proportional pressure control valve. The mathematical simulation model was derived from the quarter type model which consisted a valve and hydraulic damper for the purpose of analyzing the valve characteristics. Experiments were performed to confirm the performance of the valve and computations were carried out to ascertain the usefulness of the developed program. The results from computations fairly coincide with those from experiments. This has been achieved by developing the servomechanism valve which comprises the simple combination of a solenoid, a spool valve and a poppet valve. The results from experiments and computations show the development process of optimum proportional pressure control valve in the hydraulics system.

  • PDF

Modeling and Vibration Control of ERF-Based Intelligent Structures via Sandwich Beam Theory (샌드위치 보 이론을 이용한 ERF 지능구조물의 모델링 및 진동제어)

  • Park, Y.K.;Choi, S.B.;Cheong, C.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.110-122
    • /
    • 1996
  • 본 논문에서는 전기유동유체(Electro-Rheological Fluid : ERF)를 함유하는 지능구조물의 동적 모델링 및 진동제어를 수행하였다. 먼저 실리콘 오일을 기본용매로 하여 조성된 ERF의 복소 전단모듈러스를 전장부하와 가진 주파수의 함수로 동적 회전모드 실험을 통하여 도출한 후, 이를 샌드위치 보 이론과 연계하여 동적 모델링을 실시하였다. 도출된 6차 편미분방정식 형태의 지배 방정식을 유한요소 모델로 이산화하여 전장부하에 따른 지능구조물의 동탄성 특성값인 감쇠 고유 주파수 및 모달 손실계수를 주파수 영역에서 얻었다. 그리고 ERF를 함유한 샌드위치 형태의 지능구조물을 제작한 후 실험적으로 얻은 동탄성 특성값과 모델에 의해 예측된 동탄성 특성값을 비교 고찰하여 제시된 동적 모델에 대한 타당성을 입증하였다. 또한 모델을 통해 전장부하 함수로 예측된 주파수 응답곡선 중에서 각 주파수 대역에 대해 최소 변위가 되는 응답곡선을 요구응답으로 설정한 후, 그에 해당하는 전장부하를 선정하는 논리적인 능동 진동제어 알고리즘을 제안하였다. 제어알고리즘의 유용성을 입증하기 위해 실험적으로 수행된 능동 진동제어 결과를 주파수영역과 시간영역에서 제시하였다.

  • PDF

A Filtered-X LMS Algorithm by New Error Path Identification Method for Adaptive Active Noise Control (적응 능동소음제어를 위한 오차경로 인식 방법을 통한 filtered-X LMS 알고리듬)

  • 권기룡;송규익;김덕규;이건일
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.8
    • /
    • pp.1528-1535
    • /
    • 1994
  • In this paper, a filtered-X LMS algorithm by new error path identification method is proposed for active noise control system. The proposed algorithm identifies accurately the error path transfer function using three microphones and the control of error signal through double loop scheme with on-line. In the computer simulation using the sinusoidal and the practical duct noise, the proposed algorithm reduces noise level about 29.1dB and 10.4dB, respectively. We can observe the improvement of about 0.5dB and 2.5dB in noise level compared with that obtained using the filtered-X LMS algorithm of Eriksson model.

  • PDF

Observer Kalman Filter Identification of a Three-story Structure installed with Active Mass Driver (OKID를 이용한 실험 건물모델의 시스템 식별 실험)

  • 주석준;이상현;민경원
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.161-169
    • /
    • 2004
  • This paper deals with system identification of a three-story building model with active mass damper (MID) for the controller design. Observer Kalman filter identification (OKID) technique is applied to find the relationship between the experimental results of the input and output. The inputs to the building model with MID are ground accelerations and motor command signal, which are, respectively, simulated earthquake and equivalent control force. The outputs are each floor acceleration and MID acceleration. The MID controller is designed based on the experimentally identified building system. Finally it is shown that experimental results agree accurately with simulated results.

Semi-active Control of a Seismically Excited Cable-Stared Bridge Considering Dynamic Models of MR Fluid Damper (MR 유체 댐퍼의 동적모델을 고려한 사장교의 반(半)능동제어)

  • Jung, Hyung-Jo;Park, Kyu-Sik;Spencer, B.F.,Jr;Lee, In-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.63-71
    • /
    • 2002
  • This paper examines the ASCE first generation benchmark problem for a seismically excited cable-stayed bridge, and proposes a new semi-active control strategy focusing on inclusion of effects of control-structure interaction. This benchmark problem focuses on a cable-stayed bridge in Cope Girardeau, Missouri, USA, for which construction is expected to be completed in 2003. Seismic considerations were strongly considered in the design of this bridge due to the location of the bridge in the New Madrid seismic zone and its critical role as a principal crossing of the Mississippi River. In this paper, magnetorheological(MR) fluid dampers are proposed as the supplemental damping devices, and a clipped-optimal control algorithm is employed. Several types of dynamic models for MR fluid dampers, such as a Bingham model, a Bouc-Wen model, and a modified Bouc-Wen model, are considered, which are obtained from data based on experimental results for full-scale dampers. Because the MR fluid damper is a controllable energy-dissipation device that cannot add mechanical energy to the structural system, the proposed control strategy is fail-safe in that bounded-input, bounded-output stability of the controlled structure is guaranteed. Numerical simulation results show that the performance of the proposed semi-active control strategy using MR fluid dampers is quite effective.