• Title/Summary/Keyword: 뉴로-퍼지기법

Search Result 69, Processing Time 0.031 seconds

Nuclear Thermal Power Estimation Using the Neuro-Fuzzy Logic (뉴로-퍼지 논리를 이용한 원자력발전소의 열출력 평가)

  • Na, Man-Gyun;Min, Bong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2995-2997
    • /
    • 2000
  • 원자력발전소의 열출력 계산 결과에 가장 큰 영향을 미치는 변수는 주급수 유량이며, 측정방식상의 특성(Venturi Fouling)으로 인해 계산시 과다하게 반영될 소지가 있다 본 연구에서는 이 측정 오차를 최소화하기 위하여 뉴로-퍼지 논리를 이용하여 주급수 유량을 예측한 후 그 결과를 통해 열출력을 재평가하고자 하였다. 즉, 뉴로-퍼지로의 입력 변수(증기발생기 압력 및 수위. 터빈 충동실 압력)들은 모의훈련으로 출력을 상승시키면서 취득한 후 Wavelet Denoising 기법을 이용하여 노이즈를 제거시키고. 뉴로-퍼지 추론 계통의 파라메타들을 최적화시키기 위하여 유전적 알고리듬 및 최소자승법에 의한 Hybrid Learning Rule을 이용하여 학습시켰다. 시뮬레이션을 수행한 결과, 주급수 유량이 양호하게 예측되어, 이 결과를 토대로 열출력을 평가하는데 본 알고리듬의 적용이 성공적임을 입증하였다.

  • PDF

An Optimal Design of Neuro-Fuzzy Logic Controller Using Lamarckian Co-adaptation (라마키안 상호 적응에 의한 뉴로-퍼지 제어기의 최적 설계)

  • 이한별;김대진
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.384-389
    • /
    • 1998
  • 본 논문은 특정 응용에 적합한 퍼지 제어기의 최적 설계 파라메터(퍼지 규칙과 소속 함수)를 찾는데 역전파 학습 과정과 유전 알고리즘을 결합한 Lamarckian 상호적응 기법을 이용한 뉴로-퍼지 제어기의 새로운 설계 방법을 제안한다. 설계 파라메타들은 진화에 의한 전역적 탐색을 통해 높은 포함값과 유용한 퍼지 규칙들을 갖는 규칙 베이스와 작은 근사화 오차와 좋은 제어 성능을 갖는 소속 함수들을 얻도록 제어기간 파라메타 조절을 수행하며, 학습에 의한 국부적 탐색을 통해 각 퍼지 제어기가 원하는 제어 결과를 나타내도록 제어기내 파라메타 조절을 수행한다. 제안한 상호적응 설계 방법은 유전 알고리즘의 모든 세대에서 역전파 학습이 이루어지므로 보다 좋은 근사화 능력을 나타나고, 사용한 무게 중심 비퍼지화기가 정확한 비퍼지화값을 계산하므로 보다 좋은 제어 성능을 가지며, 퍼지 규칙 베이스와 소속 함수들의 최적화 탐색 과정이 입출력 공간의 같은 퍼지 분할 상에서 통합된 적응 함수에 의하여 동시에 수행되므로 탐색을 위한 작업 공간이 아주 작아지는 장점이 있다. 시뮬레이션 결과는 Lamarckian 상호 적응에 의해 얻어진 FLC가 퍼지 규\ulcorner 수, 근사화 능력, 제어 성능등 모든면에서 다른 방법에 의해 얻어진 FLC보다 가장 우수함을 보여준다.

  • PDF

Establishment and Application of Neuro-Fuzzy Flood Forecasting Model by Linking Takagi-Sugeno Inference with Neural Network (II) : Application and Verification (Takagi-Sugeno 추론기법과 신경망을 연계한 뉴로-퍼지 홍수예측 모형의 구축 및 적용 (II) : 실제 유역에 대한 적용 및 검증)

  • Choi, Seung-Yong;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.7
    • /
    • pp.537-551
    • /
    • 2011
  • Based on optimal input data combination selected in the earlier study, Neuro-Fuzzy flood forecasting model linked Takagi-Sugeno fuzzy inference theory with neural network in Wangsukcheon and Gabcheon is established. The established model was applied to Wangsukcheon and Gabcheon and water levels for lead time of 0.5 hr, 1 hr, 1.5 hr, 2.0 hr, 2.5 hr, 3.0 hr are forecasted. For the verification of the model, the comparisons between forecasting floods and observation data are presented. The forecasted results have shown good agreements with observed data. Additionally to evaluate quantitatively for applicability of the model, various statistical errors such as Root Mean Square Error are calculated. As a result of the flood forecasting can be simulated successfully without large errors in all statistical error. This study can greatly contribute to the construction of a high accuracy flood information system that secure lead time in medium and small streams.

Intelligent Mobility Prediction using Neuro-Fuzzy Inference Systems in Mobile Computing Systems (이동 컴퓨팅 시스템에서 뉴로-퍼지 추론 시스템을 이용한 지능적 이동성 예측)

  • Gil, Jun-Min;Park, Chan-Yeol;Yang, Gwon-U;Han, Yeon-Hui;Hwang, Jong-Seon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.4
    • /
    • pp.472-487
    • /
    • 1999
  • 본 논문에서는 효율적인 이동성 관리를 위한 이동성 예측 기법을 소개한다. 이동 컴퓨팅 환경에서는 사용자가 지리적 위치의 제약없이 언제, 어디서나 다른 네트워크 시스템과 메시지를 주고 받을수 있다. 그러나, 통신자원의 부족, 잦은 접속단절 , 사용자의 움직임 등과같은 이동 컴퓨팅 시스템의 특징 때문에, 지능적이고 효율적인 이동성관리가 요구된다. 이동 컴퓨팅 시스템이 지능적이고 효율적인 이동성관리를 통하여 높은 질의 서비스를 제공하기 위해서는 이동 사용자의 움직임 패턴들을 능동적으로 고려하는 것이 바람직하다. 본 논문에서는 이동 사용자의 과거수일, 수개월동안의 움직임 패턴 즉, 이동사용자의 위치연혁으로부터 미래 위치를 예측하는 지능적 이동성 예측기법(intelligent mobility prediction scheme)을 제안한다. 모델링 방법으로서 뉴로-퍼지 추론시스템(neuro-fuzzy inference system)을 이용한다. 뉴로-퍼지 추론 시스템이 이동 사용자가 움직이게 되는 미래 위치를 예측하기 때문에 , 본 논문에서의 이동성 예측 기법은 통신채널의 사전 배당, 부족한 자원의 사전 할당등을 위해서 사용될 수 있다. 게다가, 본 논문의 시뮬레이션 결과는 제안하는 기법이 다양한 이동 환경에 대해서 높은 예측 정확도를 갖음을 보여준다.

Fuzzy rule Extraction of Neuro-Fuzzy System using EM algorithm (EM 알고리즘에 의한 뉴로-퍼지 시스템의 퍼지 규칙 생성)

  • 김승석;곽근창;유정웅;전명근
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.170-173
    • /
    • 2002
  • 본 논문에서는 여러 분야에서 널리 응용되고 있는 적응 뉴로-퍼지 시스템(ANFIS)에서의 효과적인 퍼지 규칙 생성방법을 제안한다. ANFIS의 성능 개선을 위해 구조동정을 수행함에 있어서 전제부 파라미터는 EM(Expectation-Maximization) 알고리즘을 적용하였으며, 파라미터학습은 Jang에 의한 하이브리드 방법을 적용한다. 여기서 초기의 중심과 분산을 구하기 위해 FCM(Fuzzy c-means) 클러스터링 기법을 사용하였다. 이렇게 함으로서 적은 규칙 수를 가지면서도 효율적인 퍼지 규칙을 얻을 수 있도록 하였다. 이들 방법의 유용함을 보이고자 Box-Jenkins의 가스로 데이터에 적용하여 제안된 방법이 이전의 연구보다 좋은 결과를 보임을 보이고자 한다

  • PDF

Speed Control of Induction Motor Using Nuero-fuzzy Algorithm (뉴로-퍼지 알고리즘을 이용한 유도전동기 속도 제어)

  • Lim, Tae-Woo;Lee, Dong-Yoon;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.248-251
    • /
    • 2001
  • 논문에서는 유도전동기의 동특성을 효율적으로 제어하기 위해서 고정자 전류를 토크성분 전류와 자속성분 전류로 나누어 독립적으로 제어하는 우수한 벡터제어 기법을 사용하고 있는 유도전동기 제어 시스템에 광범위한 영역에서도 제어성능과 부하특성을 향상시킬 수 있게 하는 지능형 뉴로-퍼지 알고리즘에 의한 고성능의 속도 제어기를 설계한다. 그리고 제안한 뉴로-퍼지속도 제어기의 우수성을 시뮬레이션과 실제 시스템에의 적용을 통하여 입증한다.

  • PDF

The Analysis of Neuro-Fuzzy on External Factors of Sleep and Personal Sleep Arousal (뉴로-퍼지를 이용한 수면 외적 요인과 개인 수면 각성의 관계 영향 요소 분석)

  • Ha, Jeong-Ho;Choi, Sun-Tak;Kim, Jun-Ho;Cho, We-Duke
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.7
    • /
    • pp.175-182
    • /
    • 2018
  • The purpose of this study is to analyze the effect of sleep environment on individual sleep and to calculate optimal sleep environment. The input and output data sets are selected and the optimized sleep environment information is calculated using the neuro-fuzzy technique. Provides optimal sleep environment considering sleep duration. The arousal ratio calculated by the proposed method is 12%, which is at least 5% lower than the previous studies.

Optimization of Neuro-Fuzzy System using Particle Swarm Optimization (PSO를 이용한 뉴로-퍼지 시스템 최적화)

  • Kim, Sung-Suk;Jeon, Byung-Suk;Song, Chang-Kyu;Kim, Ju-Sik;Kim, Yong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2073-2074
    • /
    • 2006
  • 본 논문에서는 PSO를 이용한 뉴로-퍼지 모델의 구조 및 파라미터 동정을 실시한다. 진화연산 기법의 무작위 탐색 능력과 오차 미분기반 학습에서의 수렴 특성을 가진 PSO를 이용하여 학습이 진행되는 동안 모델의 구조 및 파라미터를 주어진 학습 데이터에 적합하도록 최적화 시킨다. 또한 모델의 크기를 결정하는 규칙의 수 결정을 클러스터링 기법을 이용하여 소속함수의 수가 증가하더라도 규칙이 지수함수적으로 증가하는 문제를 해결하였다. 제안된 기법의 유용성을 시뮬레이션을 통해 보이고자 한다.

  • PDF

Neuro-Fuzzy Modeling based on Self-Organizing Clustering (자기구성 클러스터링 기반 뉴로-퍼지 모델링)

  • Kim Sung-Suk;Ryu Jeong-Woong;Kim Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.688-694
    • /
    • 2005
  • In this Paper, we Propose a new neuro-fuzzy modeling using clustering-based learning method. In the proposed clustering method, number of clusters is automatically inferred and its parameters are optimized simultaneously, Also, a neuro-fuzzy model is learned based on clustering information at same time. In the previous modelling method, clustering and model learning are performed independently and have no exchange of its informations. However, in the proposed method, overall neuro-fuzzy model is generated by using both clustering and model learning, and the information of modelling output is used to clustering of input. The proposed method improve the computational load of modeling using Subtractive clustering method. Simulation results show that the proposed method has an effectiveness compared with the previous methods.

A study on network-based Neuro-Fuzzy network for Anomaly Intrusion Detection (네트워크기반의 이상침입탐지를 위한 퍼지신경망에 대한 연구)

  • 김도윤;서재현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04a
    • /
    • pp.829-831
    • /
    • 2004
  • 컴퓨터 네트워크의 확대 및 인터넷 이용의 급속한 증가에 따라 컴퓨터 보안문제가 중요하게 되었다. 따라서 침입자들로부터 위험을 줄이기 위해 침입탐지 시스템에 관한 연구가 진행되고 있다. 본 논문에서는 네트워크 기반의 이상 침입탐지를 위하여 뉴로-퍼지 기법을 적용하고자 한다. 불확실성을 처리하는 퍼지 이론을 이상 침입 탐지영역에 도입하여 적용함으로써 오용 탐지의 한계성을 극복하여 알려지지 않은 침입 탐지를 하고자 한다.

  • PDF