In recent years, neural networks have been developed as an alternative to traditional statistical techniques. In this study, a neural network model was compared to traditional forecasting models in terms of their capabilities to forecast passenger traffic for flights between U.S. and Korea. The results show that the forecasting ability of the neural networks was superior to the traditional models. In terms of accuracy, the performance of the neural networks was quite encouraging. Using mean absolute deviation, the neural network performed best. The new technique is easy to learn and apply with commercial neural network software. Therefore, airline decision makers should benefit from using neural networks in forecasting passenger loads.
This paper presents a wavelet-based neural network technology for the detection and classification of the short durations type of power quality disturbances. Transients happen during very short durations to the nano- and microsecond. Thus, a method for detecting and classifying transient signals at the same time and in an automatic combines the properties of the wavelet transform and the advantages of neural networks. Especially, the additional feature extraction to improve the recognition rate is considered. The configuration of the hardware of TMS320C6711 DSP based with 16 channel 20Mhz sampling rate A/D(Analog to Digital) converter and some case studies are described.
지능형 게임 개발을 위하여 게임 이론의 정의, 게임의 구성요소, 전략적 게임의 분석을 통해 게임에 대한 배경 환경을 살펴보고, 보다 사실적 느낌 전달을 위한 게임 애니메이션과 게임에 적용되는 인공지능 기술을 퍼지 이론, 뉴럴네트웍으로 분류하여 적용 현황을 살펴보았다. 즉 게임처럼 수학적 표현이 어려운 경우 해결점을 퍼지 이론에서, 캐릭터의 움직임을 제어하는 퍼지 Rule Base를 찾아내는 연구를 신경망 인공지능을 통해 해결하는 과정을 살펴보고 국부해의 단점을 갖는 신경망 인공지능의 불투명성 해결 방법을 유전자 알고리즘에서 찾았다. 결론적으로 게임에서 이루어지는 물리적 특성인 충돌에 대한 충돌검사 알고리즘, 충돌반응에 대한 최적화를 유전자 알고리즘을 적용하여 해결하였다.
The operational data of diesel generator engine is two kind of discrete signal and analog signal. We can find the fault information from analog data measured for every sampling time if it is invested the changing rate or direction of data. This paper propose the Malfunction Diagnosis Engine(MDE) using the commercial data mining tool and show the data Process and fault finding method with the data collected from generator engine of the ship.
It is very important to inspect the color of printed texture in the textile process. The standard colorimetric system used for the recognition of the color in the textile industry. It uses XYZ color system defined by CIE (Commission Internationale de 1Eclairage), but is too expensive. Therefore, in this paper, we propose a color inspection system of the printed texture using a color scanner. Because the scanner uses RGB value for color, it is necessary the mapping from RGB to XYZ. However, the mapping is not simple, and the scanner has even positional deviation because of the geometric characteristics. To transform from RGB to XYZ, we used a NN (neural network) model and also compensated the positional deviation. In real experiments, we could get fairly exact XYZ value from the proposed color inspection system in spite of using a color scanner with large measuring area.
It is very important to inspect color of printed texture in the textile process. To distinguish the color of the printed texture, RGB color values obtained from a scanner must be transformed to the standard colorimetric system used in the textile industry. It is XYZ color system that is defined by CIE(Commission Internationale do 1Eclairage). The mapping from RGB to XYZ color values is not simple and the scanner has even a positional deviation of RGB colors. In this paper an automatic color inspection method using a general scanning machine is presented. We used a U(neural network) model to map RGB to XYZ and compensate the positional error. In the real experiments, this inspection system shows to get very exact XYZ values from the traditional scanner regardless of the measuring position.
This paper presents a wavelet-based neural network technology for the detection and classification of the short durations type of power quality disturbances. Transients happen during very short durations to the nano- and microsecond. Thus, a method for detecting and classifying transient signals at the same time and In an automatic combines the properties of the wavelet transform and the advantages of neural networks. Especially, the additional feature extraction to improve the recognition rate is considered. The configuration of the hardware of TMS320C6711 DSP based with 16 channel 20Mhz sampling rate A/D(Analog to Digital) converter and some case studies are described.
This paper proposes a face detection and recognition method that combines the template matching method and the eigenface method with the neural network. In the face extraction step, the skin color information is used. Therefore, the search region is reduced. The global property of the face is achieved by the eigenface method. Face recognition is performed by a neural network that can learn the face property.
This study deals with various neural network algorithms for the on-site partial discharge pattern recognition. For the purpose, the pattern recognition has been carried out on partial discharge data for the typical artificial defect using 9 different neural network models. In order to enhance on-site applicability, artificial defects were installed in the insulation joint box of extra-high voltage xLPE cables and partial discharges were measured by use of the metal foil sensor and a HFCT as a sensor. As the result, it is found out that the accuracy of pattern recognition could be enhanced through the application of the Sigmoid function, the Momentum algorithm and the Genetic algorism on the artificial neural networks. Although Multilayer Perceptron (MLP) algorism showed the best result among 9 neural network algorisms, it is thought that more researches on others would be needed in consideration of on-site application.
본 논문에서는 기존의 FMMCNN이나 Fuzzy ART에서 Hyperbox를 정형으로 이용한 방법보다 적응적으로 분류가 가능한 컨벡스 집합을 기반으로 한 새로운 클래시피케이션 기법을 제안하였다. 컨벡스 다면체를 적응적으로 생성하기 위하여 퍼지 뉴럴 네트웍 분류기를 구성하고, 이를 이용한 패턴 클래스들을 생성하였다. 마지막으로, FMMCNN과의 다양한 시뮬레이션을 수행하여 본 논문의 우수성을 입증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.