• Title/Summary/Keyword: 누수피압대수층

Search Result 5, Processing Time 0.023 seconds

Parameters Estimation and Analysis for Leaky Aquifer System (누수대수층에 대한 수리상수 추정과 해석)

  • 김민환
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.3
    • /
    • pp.123-128
    • /
    • 1998
  • Leaky aquifer (two-aquifer) system in this study consist of an upper unconfined and a lower confined aquifer with a leaky layer between them. It is assumed that water is withdrawn from the confined aquifer of the aquifer system, the upper unconfined aquifer will be affected by the leaky aquifer separating the upper and lower aquifer. In order to analyze the leaky aquifer, the determination of hydraulic parameters is needed. In this paper, hydraulic parameters are suggested by improved SM (slope-matching) method. To know variation of groundwater head in leaky aquifer systems, an numerical scheme is made using the finite difference method. To verify the numerical scheme, its solution is compared to analytical one. The solution of them agrees well in one-dimensional system at steady-state condition. And heads of groundwader are computed upper and lower aquifer in two-dimensional system.

  • PDF

양수시험분석에 의한 제주도 화산암 대수층의 수리적 특성

  • 우윤정;함세영;정재열;이상선;장차연;박윤석;김봉상
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.292-295
    • /
    • 2003
  • 제주도 전역의 88개소에서 측정한 양수시험자료를 분석하여 투수량계수를 산출하였으며, 투수량계수계수와 비양수량의 관계식을 산출하였다. 제주도의 화산암 대수층은 대체로 투수성이 크고 대수층의 상.하부로부터 상당량의 지하수가 공급되므로 누수피압대수층이 적합한 모델로 판단된다. 투수량계수는 0.405~1038.52m$^2$/d로서 넓은 범위에 걸쳐서 분포하며 이는 제주도 화산 암의 투수성이 지역에 따라 다양하다는 것을 의미한다. 비양수량(Q/s)-투수량계수(T) 관계식은 T = 0.582(Q/s)$^{0.974}$ 로 계산되었으며, 이 관계식은 지역적으로 투수량계수 산출이 불가능할 경우에 비양수량만으로 투수량계수를 추정하는데 이용될 수 있다.

  • PDF

Hydrogeologic Property of Bedrock Aquifer of Mockcheon Area Applying Several Pumping Test Analyses (여러 가지 양수시험분석방법 적용을 통한 목천지역 암반대수층의 수리지질학적 특성)

  • 강래수;함세영;최성자;이병대
    • The Journal of Engineering Geology
    • /
    • v.13 no.1
    • /
    • pp.67-82
    • /
    • 2003
  • Pumping test data obtained from five natural mineral-water producing companies (Siwon Saemmul, Daejeong Eumryo, Jain Guanguang, Cheongsu Eumryo and Hanju Sikpum) that are located within 1 km radius around Mockcheon area were analyzed. Theis(1935), Papadopulos-Cooper(1967), Hantush(1960, 1962), Hantush-Jacob(1955), Moench(1985), Neuman-Witherspoon(1969), Gringarten-Witherspoon(1969) and Gringarten-Ramey(1974) equations were applied to the pumping test analysis. The result of the pumping test analysis shows that wedge-typed confined aquifer model (Hantush, 1962) and leaky confined aquifer Case-1 model (Moench, 1985) were suitable for the study area. The models match well with geologic structure in the study area which controls aquifer by means of two major thrust faults having Nl8E and NS strikes, respectively.

Computing Hydraulic Parameters of Fractured Aquifers Using Fractal Model of Groundwater Flow with Leakage (누수를 포함하는 지하수 유동의 프락탈 모델 적용에 의한 균열 암반 대수층의 수리상수 산출)

  • 함세영;임정웅
    • The Journal of Engineering Geology
    • /
    • v.4 no.2
    • /
    • pp.219-229
    • /
    • 1994
  • Since groundwater flow in fractured rocks is controlled by the distribution of fractures irregu1arly developed in space, it is not possible to understand the hydraulic characteristics of fractured aquifers using Theis equation which is applicable only to homogeneous isotropic confined aquifer. This study deals with the theoretical background of the fractal groundwater flow model with leakage, the methodology of calculation of the hydraulic parameters, and the application of the developed model to field data. From the result of the application of the fractal model to two field data in Hongcheon and Yusung areas, we obtained a good match between theoretical curves and observed curves, with the same hydraulic parameters at the pumping well and the observation well. In the two pumping test analyses, we have determined 1.9 of the fractal dimension. This means that the dimension of groundwater flow at these two sites is slightly smaller than radial flow.

  • PDF

The Scale-dependent of Hydraulic Conductivity in Leaky Confined Aquifer with High Permeability at the Ttaan Isle, Gimhae City (김해 딴섬의 고투수성 누수 피압대수층에서 수리전도도의 규모종속효과)

  • Kim, Tae-Yeong;Kang, Dong-Hwan;Kim, Sung-Soo;Kim, Byung-Woo;Kwon, Byung-Hyuk
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.415-422
    • /
    • 2008
  • Pumping test was conducted to understand hydraulic conductivity for leaky confined aquifer with high permeability. Test aquifer was formed in $25{\sim}35\;m$ below ground surface at predetermined site of riverbank filtration which junction of Nakdong river and Milyang river in the Ttaan isle, Gimhae city, Korea Monitoring wells were located at intervals of 2 m and 5 m from pumping well in south-west direction (MW1 and MW2 wells) and northeast direction (MW3 and MW4 wells), respectively. Pumping test was continuously conducted for constant pumping rate of $2,500m^3/day$, hydraulic conductivity was estimated using AQTESOLV 3.5 program. Hydraulic conductivity were estimated to be $1.745{\times}10^{-3}m/sec$ for pumping well (PW), $2.452{\times}10^{-3}m/sec$ for between PW and MW1 wells, $2.161{\times}10^{-3}m/sec$ for between PW and MW2 wells, $2.270{\times}10^{-3}m/sec$ for between PW and MW3 wells and $2.591{\times}10^{-3}m/sec$ for between PW and MW4 wells. The function of hydraulic conductivity (K) as monitoring distance (d) were estimated to be logK = 0.0693logd - 2.671 for south-west direction (PW-MW1-MW2 line), logK = 0.0817logd - 2.655 for north-east direction (PW-MW3-MW 4 line). Scale exponent of hydraulic conductivity as test volume was estimated using Schulze-Makuch et al.(1999) method. Scale exponent of this aquifer was estimated to be 0.15. It means that test aquifer has very low heterogeneity. The radius of influence estimated using transmissivity, maximum groundwater level displacement, distance from pumping well and pumping rate during pumping test were 7.148 m for south-west direction and 6.912 m for north-east direction. The increasing rate of hydraulic conductivity from pumping well to maximum radius of influence were estimated to be 1.40 times for south-west direction and 1.49 times for north-east direction. Thus, heterogeneity of test aquifer was a little higher in north-east direction.