• Title/Summary/Keyword: 뇌 활성

Search Result 431, Processing Time 0.023 seconds

Trends in the Brain Decoding Technology (브레인 디코딩 기술 동향)

  • Kim, S.
    • Electronics and Telecommunications Trends
    • /
    • v.32 no.4
    • /
    • pp.31-39
    • /
    • 2017
  • 뇌에 관한 연구는 상당히 오랫동안 이루어져 왔음에도, 뇌는 여전히 미지의 세계로 남아 있다. 미국에서 2013년 Brain Initiative를 발표한 이후 뇌를 이해하기 위한 연구가 활발히 이루어져 왔다. 최근에는 인간의 생각을 뇌의 활성 패턴 분석을 통해 읽어 내려고 시도하였으며, 심지어는 잠자는 동안 꾸는 꿈을 뇌 활성 패턴 측정을 통해 읽어 내려는 시도도 이루어졌다. 본고에서는 브레인 디코딩을 위해 어떤 기술들이 필요하며, 현재 어떤 연구들이 이루어져 왔는지에 대하여 살펴보고, 향후 브레인 디코딩 기술이 어떻게 발전할 것인지 전망해 본다.

Application for Brain Activity for Aging Population (노화에 도움 되는 뇌 활성 앱 설계)

  • Choung, Hye Myoung;Han, Kwang-Sik
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.01a
    • /
    • pp.173-174
    • /
    • 2017
  • 본 논문에서는 노화에 의해서 떨어지는 기억력의 저하 뿐 만 아니라 뇌의 비가역적 질환인 치매의 예방을 위하여 기억력 저하에 도움을 줄 수 있는 앱의 개발을 위하여 뇌의 각 영역별 기능이 활성화 될 수 있도록 하는 훈련이 가능할 수 있도록 앱을 설계하고자 한다.

  • PDF

뇌조직으로부터 정제한 Glutamate decarboxylase의 활성부위 구조 연구

  • 최수영;이수진;장상호;이길수;위세찬
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.270-270
    • /
    • 1994
  • 돼지 뇌조직으로부터 순수 분리 정제된 Glutamate decarboxylase (GAD)는 효소 dimer당 0.8mole 보조 인자인 pyridoxal-5-phosphate(PLP)가 강하게 binding되어 있었다. 이러한 부분적으로 resolved된 효소에 외부로부터 PLP를 넣어주면 효소의 활성도는 최대값으로 증가하였다. 정제된 GAD는 sulfydryl시약에 의한 화학변형에 의하여 효소의 활성도를 상실하였으며 환원제인 dithiothreitol이나 2-mercaptoethanol의 첨가에 의하여 효소의 활성도가 복구되는 것으로 보아 효소의 활성부위의 활성에 직접 관여하는 중요한 cysteinyl잔기가 존재하고 있는 것을 알 수 있다.

  • PDF

Age-Specific Brain Activation in Secondary School Students' Self-Regulating Activities on Biological Tasks -fNIRS Study (생물 과제의 자기조절 활동에서 나타나는 중등학생의 연령별 두뇌 활성 -fNIRS 연구)

  • Lee, Seo-Ri;Kwon, Yong-Ju
    • Journal of Science Education
    • /
    • v.46 no.1
    • /
    • pp.30-39
    • /
    • 2022
  • The purpose of this study is to compare and analyze secondary school student's brain activity on assimilation, conflict, and accommodation processes of self-regulation. The self-regulation task was presented a biological phylogenetic task, and the brain activity was measured and analyzed with fNIRS. As a result, a significant activation was found in the left DLPFC, OFC, and FP regions in the conflict process compared to the assimilation process, and a significant activation was found in DLPFC and VLPFC in the accommodation process. As the age increase, the DLPFC also increases in the conflict process and VLPFC increases in the assimilation process. In addition, comparing conflict and accommodation process, the 7th grade students show a significant brain activity in the right VLPFC, the 9th grade students show significant brain activity in the left FP and DLPFC areas in the accommodation process. However, the 11th grade students did not show any significant brain activity at this process. These results presumably show that the neurological research method could be applied to educational research in cognitive activity and classroom instructional situation.

Study on Biochemical Pollutant Markers for Diagnosis of Marine Pollution III. Changes in Cholinesterase Activity of Flounder(Paralichthys olivaceus)in the Yellow Sea (해양오염의 진단을 위한 생화학적 오염지표에 관한 연구 III. 황해산 넙치(Paralichthys olivaceus)의 콜린에스테라아제 활성의 변화)

  • Choi, Jin-Ho;Kim, Dong-Woo;Moon, Young-Sil;Park, Chung-Kil;Yang, Dong-Beom
    • Journal of Life Science
    • /
    • v.7 no.1
    • /
    • pp.17-23
    • /
    • 1997
  • This study was designed as a part of efforts to investigate the biochemical pollutant markers for diagnosis of maine pollutions by changes in cholinesterase activity of the flounder (Paralichthys olivaceus)in Yellow Sea of Korea. Acetylcholinesterase (AChE) activities in brain and muscle of cultured flounders in Yellow Sea were remarkably lower (40-50% and 40-55%, respectively)than those of wild flounder in Pohang (control) of East Sea, but AChE activities in brain and muscle of wild flounders in Yellow Sea were significantly lower(15-40% and 25-35%, respectively)than those of wild flounder in Pohang of East Sea. Butyrylcholinesterase(BChE) activities in barin and muscle of cultured flounders in Yellow Sea were remarkably lower(70-75% and 65-75%, respectively) than those of wild flounder in Pohang of East Sea, but BChE activities in barin and muscle of wild flounders in Yellow Sea were significantly lower (15-40%and 25-35%, respectively)than those of wild flounder in Pohang of East Sea. Lactate dehydrogenase (LDH) activities in serum of cultured flounders in Yellow Sea were significantly 10-50% higher than those of wild flounder in Pohang of East Sea, but LDH activities in serum of wild flounders in Yellow Sea were significantly 20-25% higher than those of wild flounder in Pohang of East Sea. It suggests that AChE and BChE activities in brain and muscle of cultured and wild flounders of Yellow Sea may be used as the most effective mean in a biochemical markers for diagnosis of pollutant effects by organophosphorus pesticides.

  • PDF

Seasonal Variation in the $Na^+$,$K^+$-ATPase Activity in Frog (Rana dybowskii) Brain (개구리 뇌에서 $Na^+$,$K^+$- ATPase 특성의 계절적 변화)

  • 김미승;임욱빈
    • The Korean Journal of Zoology
    • /
    • v.38 no.4
    • /
    • pp.449-456
    • /
    • 1995
  • Seasonal changes in the activity and charaderistics of brain Na+, K+-ATPase and Mg2+-AWase were investigated in frog (Rana dybowskii) The brain Na+, K+-ATPase adivity during hibernation was similar to that in active period in frogs. The Na+, K+-AWase activity increased in December and March, when the frogs enter into and awake from the hibernation. Over 5-35$^{\circ}C$ temperature range, Na+, K+-ATPase showed non4inear Arrhenius kinetics throughout the year. The brain Mg2+-ATPase activity decreased during hibernation, but markedly increased in March. The Arrhenius plots for Mg2+-AWase activity were linear in frogs both in torpid and active state. The ratio of Na+, K+-AWase activity at 15~C to at 35~C did not change during hibernation. The sensitivity of Na+, K+-AWase to ouabain was also unchanged throughout the year. These results indicate that the activity and charaderistics of brain Na+, K+-AWase remain unchanged during hobernadon in frog.

  • PDF

Quantitative Evaluation of Regional Cerebral Blood Flow by Visual Stimulation in $^{99m}Tc-HMPAO$ Brain SPECT ($^{99m}Tc-HMPAO$ 뇌 SPECT에서 시각자극에 의한 국소 뇌 혈류변화의 정량적 검증)

  • Juh, Ra-Hyeong;Suh, Tae-Suk;Kwark, Chul-Eun;Choe, Bo-Young;Lee, Hyoung-Koo;Chung, Yong-An;Kim, Sung-Hoon;Chung, Soo-Kyo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.3
    • /
    • pp.166-176
    • /
    • 2002
  • Purpose: The purpose of this study is to investigate the effects of visual activation and quantitative analysis of regional cerebral blood flow. Visual activation was known to increase regional cerebral blood flow in the visual cortex in occipital lobe. We evaluated that change in the distribution of $^{99m}Tc-HMPAO$ (Hexamethyl propylene amine oxime) to reflect in regional cerebral blood flow. Materials and Methods: The six volunteers were injected with 925 MBq (mean ages: 26.75 years, n=6, 3men, 3women) underwent MRI and $^{99m}Tc-HMPAO$ SPECT during a rest state with closed eyes and visual stimulated with 8 Hz LED. We delineate the legion of interest and calculated the mean count per voxel in each of the fifteen slices to quantitative analysis. The ROI to whole brain ratio and regional index was calculated pixel to pixel subtraction visual non-activation image from visual activation image and constructed brain map using a statistical parameter map (SPM99). Results: The mean regional cerebral blood flow was increased due to visual stimulation. The increase rate of the mean regional cerebral blood flow which of the activation region in primary visual cortex of occipital lobe was $32.50{\pm}5.67%$. The significant activation sites using a statistical parameter of brain constructed a rendering image and image fusion with SPECT and MRI. Conclusion: Visual activation was revealed significant increase through quantitative analysis in visual cortex. Activation region was certified in Talairach coordinate and primary visual cortex (Ba17),visual association area (Ba18,19) of Brodmann.

Brain Areas involved in graphaesthesia : Tactile sensation to letter recognition (문자감각인지와 관련된 뇌영역에 대한 연구 : 문자인지와 관련된 감각과정에 대한 기능적 뇌자기공명영상 연구)

  • 김광기;우성호;이경민
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2002.05a
    • /
    • pp.208-210
    • /
    • 2002
  • 신경과 의사들은 실제 임상에서 환자들에게 대뇌피질감각의 이상 여부를 알기 위해 손바닥에 숫자나 문자를 쓰게 하여 알아 맞추게 하는 검사를 시행한다. 손바닥에 쓰여진 문자나 숫자를 인식하기 위해서는 몇 가지 단계의 인지과정이 필요할 것으로 생각된다. 첫번째로 손바닥에 닿는 감각을 인지해야 하고, 다음 단계로 이 감각들을 시공간적으로 통합하는 과정이 필요할 것이고, 이러한 정보들을 유지하면서 마지막 단계로 우리 머리 속에 있는 문자와 일치시키는 과정이 필요할 것이다. 본 연구에서는 위와 같은 가설 아래 각각에 해당할 수 있는 뇌영역을 밝히기 위해 기능적 뇌자기공명영상을 이용하였다. 손바닥의 일차적 감각을 인지하는 데는 일차감각영역이 활성화 되었고, 이차감각영역의 활성은 감각들의 시공간적 통합과 관련될 것으로 생각되었으며, 이것들을 유지하는 것은 작업기억의 하부구조인 시공간 그림판과 관련되는 영역이며, 문자를 일치시키는 과정은 브로카영역 부근의 활성과 관련되는 것으로 생각되었다. 위의 가설에 대한 추가검증 및 실제로 일어나는 인지과정에 대한 추가적인 연구가 필요할 것이다.

  • PDF

Study on Biochemical Pollutant Markers for Diagnosis of Marine Pollution IX. Changes in Cholinesterase Activity of the Flounder (Paralichthys olivaceus) in the South Sea (해양오염의 진단을 위한 생화학적 오염지표에 관한 연구 IX. 남해산 넙치 (Paralichthys olivaceus)의 콜린에스테라아제의 변화)

  • CHOI Jin-Ho;KIM Dong-Woo;PARK Soo-Hyun;PARK Chung-Kil;YANG Dong Beom;LEE Jong-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.1
    • /
    • pp.37-41
    • /
    • 1999
  • This study was designed as a part of efforts to investigate the biochemical pollutant markers for diagnosis of marine pollutions by changes in cholinesterase activity of the flounder (Paralichthys olivaceus) in tie South Sea of Korea. Aceflcholinesterase (AChE) activities in brain and muscle of cultured flounders in the South Sea were significantly lower ($10\~20\%$ and $12\~19\%$, respectively) than those of wild flounder in Pohang of the East Sea as a control. Buthrylcholinesterase (BChE) activites in brain and muscle of cultured flounders in the South Sea were also remarkably lower ($25\~40\%$ and $22\~35\%$, respectively) than those of wild flounder in Pohang. Lactate dehydrogenase (LDH) activites in serum of cultured flounders in South Sea were significantly higher ($10\~55\%$) than those of wild flounder in Pohang. It suggests that AChE, BChE and LDH activities of the flounders clould be used as effective biochemical markers for early warning of environmental damages caused by organophosphorus pesticides.

  • PDF

Effect of Methionine Levels on Brain Lipid Peroxidation in Ethanol-treated Rats of Selenium Deficiency (메티오닌과 셀렌이 에탄올 중독된 흰쥐의 뇌지질과산화에 미치는 영향)

  • 조수열;이미경;박은미;장주연;김명주
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.1
    • /
    • pp.109-115
    • /
    • 1997
  • This study was designed to investigate the effects of methionine(Met) on the activities of brain lipid peroxidation related enzymes in ethanol administrated rats of selenium(Se) deficiency. Male Sprague-Dawley rats were fed Se deficiency diets containing one of the three levels of Met (0, 3, 9g/kg diet) and ethanol(2.5g/kg of body weight) was administrated as 25v/v% ethanol treated groups orally. The rats sacrificed after 5 and 10 weeks of feeding periods. Alcohol dehydrogenase activity was increased in ethanol treated groups and was higher Met normal group than Met deficiency and excessive groups at 5 and 10 weeks dieting. Aldehyde dehydrogenase activity was decreased in ethanol treated groups and significantly decreased in Met deficiency group. Monoamine oxidase activity in brain was increased in ethanol treated groups and was predominently increased in Met deficiency groups. Superoxide dismutase and glutathione peroxidase activities were decreased in ethanol treated groups and tended to increase in proportion to level of dietary methionine. Glutathione S-transferase and catalase activities and lipid peroxide content were increased by ethanol administration and were higher Met deficiency group than normal and excessive groups.

  • PDF