• Title/Summary/Keyword: 뇌 관류 CT

Search Result 15, Processing Time 0.023 seconds

At the time of inspection CT cerebral blood flow in patients with acute ischemic stroke, a comparative study of Bolus Tracking Technique and Fixed Time Technique (급성기 허혈성 뇌졸중 환자의 뇌 관류 CT검사 시 고정시간기법과 조영제 추적기법의 비교 연구)

  • Kim, Ki-Jeong;Jeong, Hong-Ryang
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2013.05a
    • /
    • pp.217-218
    • /
    • 2013
  • 급성기 허혈성 뇌졸중 증상이 있는 뇌 관류 CT검사를 시행한 환자를 대상으로 장비사가 제시한 고정 시간 기법(fixed time technique)과 조영제 추적 기법(bolus tracking technique)을 비교하여 환자의 피폭선량을 분석하고자 하였으며 조영제 추적 기법의 유용성과 최적의 조영증강 구간을 구현하는 Time graph를 알아보기 위한 것이다.

  • PDF

Dynamic Computed Tomography based on Spatio-temporal Analysis in Acute Stroke: Preliminary Study (급성 뇌졸중 환자의 시공간 분석 기법을 이용한 동적 전산화 단층 검사: 예비 연구)

  • Park, Ha-Young;Pyeon, Do-Yeong;Kim, Da-Hye;Jung, Young-jin
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.543-547
    • /
    • 2016
  • Acute stroke is a one of common disease that require fast diagnosis and treatment to save patients life. however, the acute stroke may cause lifelong disability due to brain damage with no prompt surgical procedure. In order to diagnose the Stroke, brain perfusion CT examination and possible rapid implementation of 3D angiography has been widely used. However, a low-dose technique should be applied for the examination since a lot of radiation exposure to the patient may cause secondary damage for the patients. Therefore, the degradation of the measured CT images may interferes with a clinical check in that blood vessel shapes on the CT image are significantly affected by gaussian noise. In this study, we employed the spatio-temporal technique to analyze dynamic (brain perfusion) CT data to improve an image quality for successful clinical diagnosis. As a results, proposed technique could remove gaussian noise successfully, demonstrated a possibility of new image segmentation technique for CT angiography. Qualitative evaluation was conducted by skilled radiological technologists, indicated significant quality improvement of dynamic CT images. the proposed technique will be useful tools as a clinical application for brain perfusion CT examination.

Clinical Application of Acute Ischemic Stroke in Perfusion Computed Tomography (초급성 허혈성 뇌졸중에서 관류 전산화단층촬영의 임상적 적용에 대한 연구)

  • Lee, Jong-Seok;Yoo, Beong-Gyu;Kweon, Dae-Cheol
    • Progress in Medical Physics
    • /
    • v.18 no.3
    • /
    • pp.149-160
    • /
    • 2007
  • Recent advent of 64-multidetctor (MD) CT enables more coverage of Z-axis in the perfusion imaging. The purpose of this study was to evaluate the clinical usefulness of perfusion CT by using 64-MD CT in detecting the lesion in patients with acute stroke. The perfusion CT was performed by using 64-MD CT in 62 consecutive patients who were initially suspected to have subacute ischemic stroke symptoms during the period of recent 9 months. These patients had subacute stroke (n=62). CT scanning was conducted with Jog Mode which provided 16 imaging slices with 5 mm of slice thickness, and 8 cm of coverage in Z-axis. Scan interval was 1 seconds for each imaging slice and total 15 scans were repeated. After CT scanning, perfusion maps (CBV, CBF, MTT and TTP) were created at Extended Brilliance Workstation. The CBV and CBF maps showed that lesions were smaller images. While on the MTT and TTP map lesions were seen to be larger fifty-one were large than they appeared on these images. Two slices of perfusion maps obtained at the level of the basal ganglia were chosen to simulate conventional older perfusion CT with 8 cm of coverage in Z-axis. TTP and MTT maps may be clinically useful for evaluation of the penumbral zone in cases of aubacute cerebral ischemic stroke. The perfusion CT is useful in the assessment of acute stroke as an initial imaging modality.

  • PDF

A Study on the Mitigation of the Exposure Dose Applying Bolus Tracking in Brain Perfusion CT Scan (뇌 관류 CT검사에서 BolusTracking기법을 적용한 피폭선량 저감화에 관한 연구)

  • Kim, Ki-Jeong;Jung, Hong-Ryang;Lim, Cheong-Hwan;Hong, Dong-Hee;Shim, Jae-Goo;You, In-Gyu
    • Journal of Digital Convergence
    • /
    • v.12 no.3
    • /
    • pp.353-358
    • /
    • 2014
  • This study was conducted to analyze the patient's exposed dose targeting the patients who had acute ischemic stroke symptoms and CT brain perfusion scan, by comparing fixed time technique and bolus tracking technique which was provided by the manufacturer and to identify the Time graph to implement the usability of contrast medium's tracking technique the best contrast enhancement intervals. $CTDI_{VOL}$ of PCT in patient appeared to be 431.72mGy in fixed scan delay protocol, whereas 323.61mGy in Bolus tracking technique. The value of DLP appeared to be $1243.47mGy{\cdot}cm$ in fixed scan delay protocol, whereas $932mGy{\cdot}cm$ in Bolus tracking technique. Time graph appeared to be various in fixed scan delay protocol, whereas the optimal time graph could be obtained in Bolus tracking. The exposure dose could be reduced by 25% applying Bolus tracking technique when taking brain perfusion CT scan.

A Study on the Radiation Exposure Dose of Brain Perfusion CT Examination a Phantom (Phantom을 이용한 뇌 관류 CT검사에서 방사선 피폭선량에 관한 연구)

  • Jung, Hong-Rynag;Kim, Ki-Jeong;Mo, Eun-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.5
    • /
    • pp.287-294
    • /
    • 2015
  • The purpose of this study, was Let's examine the exposure dose at the time of cerebral blood flow CT scan of acute ischemic stroke patients. In particular, long-term high doses of radiation sensitive organs and we Measured using phantom and a glass dosimeter. Apply the existing protocol suggested by the manufacturer (fixed time delay technique) and the proposed new convergence protocol (bolus tracking technique), reporting to measure the dose, dose reduction was to prepare the way. Results up to 39.8% as compared to the existing protocols in a new suggested convergence protocol, a minimum of 5.8% was long-term dose is reduced. Test dose of $CDTI_{vol}$ and DLP values decreased 25%, respectively, were measured at less than recommended dose. Try checking the protocol set out in the existing based on the analysis result of the above, by applying the proposed new convergence protocol by reducing the dose would have to contribute to improved public health. It is believed to be research continues to find the optimum protocol in the other tests.

Research on Perfusion CT in Rabbit Brain Tumor Model (토끼 뇌종양 모델에서의 관류 CT 영상에 관한 연구)

  • Ha, Bon-Chul;Kwak, Byung-Kook;Jung, Ji-Sung;Lim, Cheong-Hwan;Jung, Hong-Ryang
    • Journal of radiological science and technology
    • /
    • v.35 no.2
    • /
    • pp.165-172
    • /
    • 2012
  • We investigated the vascular characteristics of tumors and normal tissue using perfusion CT in the rabbit brain tumor model. The VX2 carcinoma concentration of $1{\times}10^7$ cells/ml(0.1ml) was implanted in the brain of nine New Zealand white rabbits (weight: 2.4kg-3.0kg, mean: 2.6kg). The perfusion CT was scanned when the tumors were grown up to 5mm. The tumor volume and perfusion value were quantitatively analyzed by using commercial workstation (advantage windows workstation, AW, version 4.2, GE, USA). The mean volume of implanted tumors was $316{\pm}181mm^3$, and the biggest and smallest volumes of tumor were 497 $mm^3$ and 195 $mm^3$, respectively. All the implanted tumors in rabbits are single-nodular tumors, and intracranial metastasis was not observed. In the perfusion CT, cerebral blood volume (CBV) were $74.40{\pm}9.63$, $16.08{\pm}0.64$, $15.24{\pm}3.23$ ml/100g in the tumor core, ipsilateral normal brain, and contralateral normal brain, respectively ($p{\leqq}0.05$). In the cerebral blood flow (CBF), there were significant differences between the tumor core and both normal brains ($p{\leqq}0.05$), but no significant differences between ipsilateral and contralateral normal brains ($962.91{\pm}75.96$ vs. $357.82{\pm}12.82$ vs. $323.19{\pm}83.24$ ml/100g/min). In the mean transit time (MTT), there were significant differences between the tumor core and both normal brains ($p{\leqq}0.05$), but no significant differences between ipsilateral and contralateral normal brains ($4.37{\pm}0.19$ vs. $3.02{\pm}0.41$ vs. $2.86{\pm}0.22$ sec). In the permeability surface (PS), there were significant differences among the tumor core, ipsilateral and contralateral normal brains ($47.23{\pm}25.45$ vs. $14.54{\pm}1.60$ vs. $6.81{\pm}4.20$ ml/100g/min)($p{\leqq}0.05$). In the time to peak (TTP) were no significant differences among the tumor core, ipsilateral and contralateral normal brains. In the positive enhancement integral (PEI), there were significant differences among the tumor core, ipsilateral and contralateral brains ($61.56{\pm}16.07$ vs. $12.58{\pm}2.61$ vs. $8.26{\pm}5.55$ ml/100g). ($p{\leqq}0.05$). In the maximum slope of increase (MSI), there were significant differences between the tumor core and both normal brain($p{\leqq}0.05$), but no significant differences between ipsilateral and contralateral normal brains ($13.18{\pm}2.81$ vs. $6.99{\pm}1.73$ vs. $6.41{\pm}1.39$ HU/sec). Additionally, in the maximum slope of decrease (MSD), there were significant differences between the tumor core and contralateral normal brain($p{\leqq}0.05$), but no significant differences between the tumor core and ipsilateral normal brain($4.02{\pm}1.37$ vs. $4.66{\pm}0.83$ vs. $6.47{\pm}1.53$ HU/sec). In conclusion, the VX2 tumors were implanted in the rabbit brain successfully, and stereotactic inoculation method make single-nodular type of tumor that was no metastasis in intracranial, suitable for comparative study between tumors and normal tissues. Therefore, perfusion CT would be a useful diagnostic tool capable of reflecting the vascularity of the tumors.

Analysis of Neurological Complications on Antegrade Versus Retrograde Cerebral Perfusion in the Surgical Treatment of Aortic Dissection (대동맥 박리에서 전방성 뇌 관류와 역행성 뇌 관류의 신경학적 분석)

  • Park Il;Kim Kyu Tae;Lee Jong Tae;Chang Bong Hyun;Lee Eung Bae;Cho Joon Yong
    • Journal of Chest Surgery
    • /
    • v.38 no.7 s.252
    • /
    • pp.489-495
    • /
    • 2005
  • In the surgical treatment of aortic dissection, aortic arch replacement under total circulatory arrest is often performed after careful inspection to determine the severity of disease progression. Under circulatory arrest, antegrade or retrograde cerebral perfusion is required for brain protection. Recently, antegrade cerebral perfusion has been used more, because of the limitation of retrograde cerebral perfusion. This study is to compare these two methods especially in the respect to neurological complications. Material and Method: Forty patients with aortic dissection involving aortic arch from May 2000 to May 2004 were enrolled in this study, and the methods of operation, clinical recovery, and neurological complications were retrospectively reviewed. Result: In the ACP (antegrade cerebral perfusion) group, axillary artery cannulation was performed in 10 out of 15 cases. In the RCP (retrograde cerebral perfusion) group, femoral artery Cannulation was performed in 24 out of 25 cases. The average esophageal and rectal temperature under total circulatory arrest was $17.2^{\circ}C\;and\;22.8^{\circ}C$ in the group A, and $16.0^{\circ}C\;and\;19.7^{\circ}C$ in the group B, respectively. Higher temperature in the ACP group may have brought the shorter operation and cardiopulmonary bypass time. However, the length of period for postoperative clinical recovery and admission duration did not show any statistically significant differences. Eleven out of the total 15 cases in the ACP group and thirteen out of the total 25 cases in the RCP group showed neurological complication but did not show statistically significant difference. In each group, there were 5 cases with permanent neurological complications. All 5 cases in the ACP group showed some improvements that enabled routine exercise. However all 5 cases in RCP group did not show significant improvements. Conclusion: The Antegrade, cerebral perfusion, which maintains orthordromic circulation, brings moderate degree of hypothermia and, therefore, shortens the operation time and cardiopulmonary bypass time. We concluded that Antegrade cerebral perfusion is safe and can be used widely under total circulatory arrest.

The Usefulness of Deconvolution Perfusion CT in Patients with Acute Cerebral Infarction : Comparison with Diffusion MRI (급성 뇌경색 환자에서 Deconvolution perfusion CT의 유용성 : Diffusion MRI와 비교)

  • Eun, Sung-Jong;Kim, Young-Keun
    • Journal of radiological science and technology
    • /
    • v.26 no.3
    • /
    • pp.25-31
    • /
    • 2003
  • This study was performed to evaluate the usefulness of Deconvolution perfusion CT in patients with acute cerebral infarction. Nine patients with acute cerebral infarction underwent conventional CT and cerebral perfusion CT within 23 hours of the onset of symptoms. The perfusion CT scan for each patient was obtained at the levels of basal ganglia and 1cm caudal to the basal ganglia. By special imaging software, perfusion images including cerebral blood volume(CBV), cerebral blood flow(CBF), and mean transit time(MTT) maps were created. The created lesions were evaluated on each perfusion maps by 3 radiolocical technician. MTT delay time was measured in the perfusion defect lesion and symmetric contralateral normal cerebral hemisphere. Lesion sire were measured on each perfusion map and compared with the value obtained by diffusion weighted MR imaging(DWMRI). All perfusion CT maps showed the perfusion defect lesion in all patients. There were remarkable CT delay in perfusion defect lesion. In comparison of lesion size between each perfusion map and DWMRI, the lesion on CBF map was the most closely correlated with the lesion on DWMRI(7/9). The size of perfusion defect lesion on MTT map was larger than that of lesion on DWMRI, suggesting that m map can evaluate the ischemic penumbra. Deconvolution Perfusion CT maps make it possible to evaluate not only ischemic core and ischemic penumbra but also hemodynamic status in perfusion defect area. These results demonstrate that perfusion CT can be useful to the diagnosis and treatment in the patients with acute cerebral ischemic infarction.

  • PDF

Comparison of Lens Dose in accordance with Bismuth shielding and Patient position in Brain perfusion CT (Brain Perfusion CT에서 Bismuth 차폐와 환자의 자세 변화에 따른 수정체 선량 비교 연구)

  • Gang, Eun Bo
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.1
    • /
    • pp.47-52
    • /
    • 2018
  • Brain perfusion CT scanning is often employed usefully in clinical conditions as it accurately and promptly provides information about the perfusion state of patients having acute ischemic stroke with a lot of time constraints and allows them to receive proper treatment. Despite those strengths of it, it also has a serious weakness that Lens may be exposed to a lot of dose of radiation in it. In this study, as a way to reduce the dose of radiation to Lens in brain perfusion CT scanning, this researcher conducted an experiment with Bismuth shielding and change of patients' position. TLD (TLD-100) was placed on both lens using the phantom (PBU-50), and then, in total 4 positions, parallel to IOML, parallel to IOML (Bismuth shielding), parallel to SOML, and parallel to SOML (Bismuth shielding), brain perfusion scanning was done 5 times for each position, and dose to Lens were measured. Also, to examine how the picture quality changed in different positions, 4 areas of interest were designated in 4 spots, and then, CT number and noise changes were measured and compared. According to the results of conducting one-way ANOVA on the doses measured, as the significance probability was found to be 0.000, so there was difference found in the doses of radiation to crystalline lenses. According to the results of Duncan's post-hoc test, with the scanning of being parallel to IOML as the reference, the reduction of 89.16% and 89.66% was observed in the scanning of being parallel to SOML and that of being parallel to SOML (Bismuth shielding) respectively, so the doses to Lens reduced significantly. Next, in the scanning of being parallel to IOML (Bismuth shielding), the reduction of 37.12% was found. According to the results, reduction in the doses of radiation was found the most significantly both in the scanning of being parallel to SOML and that of being parallel to SOML (Bismuth shielding). With the limit of the equivalent dose to Lens as the reference, this researcher conducted comparison with the dose to occupational exposure and dose to Public exposure in the scanning of being parallel to IOML and found 39.47% and 394.73% respectively; however in the scanning of being parallel to SOML (Bismuth shielding), considerable reduction was found as 4.08% and 40.8% respectively. According to the results of evaluation on picture quality, every image was found to meet the evaluative standards of phantom scanning in terms of the measurement of CT numbers and noise. In conclusion, it would be the most useful way to reduce the dose of radiation to Lens to use shields in brain perfusion CT scanning and adjust patients' position so that their lens will not be in the field of radiation.

Evaluation of Database Comparison Methods for 18F-FDG Brain PET/CT (18F-FDG Brain PET/CT 검사를 위한 데이터 비교 방법의 평가)

  • Do, Yong Ho;Lee, Hong Jae;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.19 no.1
    • /
    • pp.62-66
    • /
    • 2015
  • Purpose Various database comparison methods(DCM) are used for analyzing functional neuro-imaging. It is possible to statistically evaluate decreased or increased metabolism of abnormal patient's brain by comparing with asymptomatic controls in DCM. And results of DCM are additionally used for easily explaining defect region. The aim of this study was to evaluate usefulness of statistical parametric mapping(SPM) and scenium. Materials and Methods Data of 15 patients($62.02{\pm}15.03year$) underwent $^{18}F-FDG$ brain PET/CT were collected and analyzed. Biograph TruePoint 40 with TrueV, (Siemens) was used as a PET/CT scanner. Scenium(version 4.0) in Syngo.via(version VA30A) and SPM99 were applied for statistical evaluation. Consistency between PET reading and result of DCM were evaluated by 5 nuclear medicine physicians through a questionnaire survey. SUV and SD changes were evaluated by changing iteration, gaussian filter and matrix size in scenium. And average required time for generating result of SPM99 and scenium was compared by 3 medical technologists. Results Consistency from the result of SPM99 and scenium showed 84% and 92.4% compare to PET reading. When iteration 4, FWHM 8 and matrix size 168, SUV and SD were decreased by 0.59%, 8.73%, 4.69%, 20.38% and 0.88%, 8.25% respectively compare to routine parameter(iteration 8, FWHM 2 and matrix size 336) of scenium. Average required time of SPM99 and Scenium took 282 seconds and 116 seconds to generate result. Conclusion Results of SPM99 and Scenium showed high consistency compare to PET reading. Various parameters can be controled by user when using SPM. However, normal database needs to be acquired. And it takes significant amount of time and effort for the first set up. On the other hand, Scenium provides normal database even though modifiable parameters are limited. Therefore, more informations could be provided for brain PET/CT if properly understanding and selecting each DCM.

  • PDF