• Title/Summary/Keyword: 뇌 과학

Search Result 795, Processing Time 0.025 seconds

A Study on the effects of one's blood type on brain function and corelation character of middle.high school (중.고등학생의 혈액형과 뇌 기능 및 좌우뇌 선호도와의 관계연구)

  • Bak, Ki-Ja;Ahn, Sang-Kyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.1053-1056
    • /
    • 2010
  • 이 연구는 중고등학생들의 혈액형이 뇌 기능 및 좌우뇌선호도와 관계가 있는지를 개인이 지닌 뇌신경 생리학적 지표인 뇌파 측정을 이용하여 비교 하여 보았다. 대상자는 2005년 9월에서 2008년 12월까지 한국정신과학연구소에 뇌파측정 의뢰한 중고등학생을 기준으로 선정한 자료이다. 중학생 여 628 남 1002 고등학생 여 213 남365 총 2208명이다. 중학생 혈액형 분포도는 A>B>O>AB형 순이었다. 분석의 결과 중고등학생의 혈액형과 좌우뇌선호도와는 무관 하였다. 그리고 혈액형과 중고등학생의 뇌 기능과도 무관하였다. 위의 결과를 종합하면 혈액형과 지능이나 성격을 함부로 연관 지어 편견이나 차별을 유도하는 것은 바람직하지 않다고 본다.

  • PDF

Double-processed ginseng berry extracts enhance learning and memory in an Aβ42-induced Alzheimer's mouse model (Aβ42로 유도된 알츠하이머 마우스 모델에서 이중 가공 인삼열매 추출물의 학습 및 기억 손실 개선 효과)

  • Jang, Su Kil;Ahn, Jeong Won;Jo, Boram;Kim, Hyun Soo;Kim, Seo Jin;Sung, Eun Ah;Lee, Do Ik;Park, Hee Yong;Jin, Duk Hee;Joo, Seong Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.2
    • /
    • pp.160-168
    • /
    • 2019
  • This study aimed to determine whether double-processed ginseng berry extract (PGBC) could improve learning and memory in an $A\hat{a}42$-induced Alzheimer's mouse model. Passive avoidance test (PAT) and Morris water-maze test (MWMT) were performed after mice were treated with PGBC, followed by acetylcholine (ACh) measurement and glial fibrillary acidic protein (GFAP) detection for brain damage. Furthermore, acetylcholinesterase (AChE) activity and choline acetyltransferase (ChAT) expression were analyzed using Ellman's and qPCR assays, respectively. Results demonstrated that PGBC contained a high amount of ginsenosides (Re, Rd, and Rg3), which are responsible for the clearance of $A{\hat{a}} 42$. They also helped to significantly improve PAT and MWMT performance in the $A{\hat{a}} 42-induced$ Alzheimer's mouse model when compared to the normal group. Interestingly, ACh and ChAT were remarkably upregulated and AChE activities were significantly inhibited, suggesting PGBC to be a palliative adjuvant for treating Alzheimer's disease. Altogether, PGBC was found to play a positive role in improving cognitive abilities. Thus, it could be a new alternative solution for alleviating Alzheimer's disease symptoms.

Brain Metabolite Changes in Insomnia and Obstructive Sleep Apnea (수면장애에서 나타나는 뇌 대사물질의 변화 : 불면증과 폐쇄수면무호흡증을 중심으로)

  • Hong, Haejin;Lee, Hyangwon;Yoon, Sujung;Kim, Jungyoon
    • Sleep Medicine and Psychophysiology
    • /
    • v.28 no.1
    • /
    • pp.18-26
    • /
    • 2021
  • Sleep is essential to brain function and mental health. Insomnia and obstructive sleep apnea (OSA) are the two most common sleep disorders, and are major public health concerns. Proton magnetic resonance spectroscopy (1H-MRS) is a non-invasive method of quantifying neurometabolite concentrations. Therefore, 1H-MRS studies on individuals with sleep disorders may enhance our understanding of the pathophysiology of these disorders. In this article, we reviewed 1H-MRS studies in insomnia and OSA that reported changes in neurometabolite concentrations. Previous studies have consistently reported insomnia-related reductions in γ-aminobutyric acid (GABA) levels in the frontal and occipital regions, which suggest that changes in GABA are important to the etiology of insomnia. These results may support the hyperarousal theory that insomnia is associated with increased cognitive and physiological arousal. In addition, the severity of insomnia was associated with low glutamate and glutamine levels. Previous studies of OSA have consistently reported reduced N-acetylaspartate (NAA) levels in the frontal, parieto-occipital, and temporal regions. In addition, OSA was associated with increased myo-inositol levels. These results may provide evidence that intermittent hypoxia induced by OSA may result in neuronal damage in the brain, which can be related to neurocognitive dysfunction in patients with OSA. The current review summarizes findings related to neurochemical changes in insomnia and OSA. Future well-designed studies using 1H-MRS have the potential to enhance our understanding of the pathophysiology of sleep disorders including insomnia and OSA.

The Effect of Leukoaraiosis on the Severity and Course of Delirium (백질변성이 섬망의 심각도 및 경과에 미치는 영향)

  • Choi, Won-Jung;Seok, Jeong-Ho;Oh, Seung-Taek;Chung, Tae-Sub;Kim, Jae-Jin
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.26 no.2
    • /
    • pp.194-200
    • /
    • 2018
  • Objectives : The significance of leukoaraiosis on brain magnetic resonance imaging (MRI) is uncertain, but it is often seen with vascular risk factors or in the context of cognitive impairment. We aimed to investigate the effect of leukoaraiosis on the severity and course of delirium. Methods : Periventricular hyperintensity and deep white matter hyperintensity on brain MRI were rated in 42 patients with delirium by semiquantative visual rating scale. Correlations between their grades and the scores of Korean version of Delirium Rating Scale-Revised-98 (K-DRS-R-98) were analyzed, and the interaction effects between the groups according to the levels of leukoaraiosis and two evaluation points were also analyzed. Results : The grade of deep white matter hyperintensity in the occipital lobe was positively correlated with the scores on the total, severity items, cognitive items, and non-cognitive items of K-DRS-R-98. The cognitive items scores of K-DRS-R-98 in the low grade group of periventricular hyperintensity showed significantly steeper decrease than the high grade group. Conclusions : A difference in severity or recovery speed of delirium according to the level of leukoaraiosis may result from disruption in brain functional connectivity. Our results have a clinical implication in that the severity and course of delirium can be possibly predicted using the level of leukoaraiosis.

The impact of functional brain change by transcranial direct current stimulation effects concerning circadian rhythm and chronotype (일주기 리듬과 일주기 유형이 경두개 직류전기자극에 의한 뇌기능 변화에 미치는 영향 탐색)

  • Jung, Dawoon;Yoo, Soomin;Lee, Hyunsoo;Han, Sanghoon
    • Korean Journal of Cognitive Science
    • /
    • v.33 no.1
    • /
    • pp.51-75
    • /
    • 2022
  • Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation that is able to alter neuronal activity in particular brain regions. Many studies have researched how tDCS modulates neuronal activity and reorganizes neural networks. However it is difficult to conclude the effect of brain stimulation because the studies are heterogeneous with respect to the stimulation parameter as well as individual difference. It is not fully in agreement with the effects of brain stimulation. In particular few studies have researched the reason of variability of brain stimulation in response to time so far. The study investigated individual variability of brain stimulation based on circadian rhythm and chronotype. Participants were divided into two groups which are morning type and evening type. The experiment was conducted by Zoom meeting which is video meeting programs. Participants were sent experiment tool which are Muse(EEG device), tdcs device, cell phone and cell phone holder after manuals for experimental equipment were explained. Participants were required to make a phone in frount of a camera so that experimenter can monitor online EEG data. Two participants who was difficult to use experimental devices experimented in a laboratory setting where experimenter set up devices. For all participants the accuracy of 98% was achieved by SVM using leave one out cross validation in classification in the the effects of morning stimulation and the evening stimulation. For morning type, the accuracy of 92% and 96% was achieved in classification in the morning stimulation and the evening stimulation. For evening type, it was 94% accuracy in classification for the effect of brain stimulation in the morning and the evening. Feature importance was different both in classification in the morning stimulation and the evening stimulation for morning type and evening type. Results indicated that the effect of brain stimulation can be explained with brain state and trait. Our study results noted that the tDCS protocol for target state is manipulated by individual differences as well as target state.

A Review on Effects of Non-Invasive Brain Stimulation in the Treatment of Sleep Disorders (수면장애에서 비침습적 뇌자극술의 치료 효과 고찰: 경두개자기자극술과 경두개직류전기자극술을 중심으로)

  • Kim, Shinhye;Lee, Suji;Lim, Soo Mee;Yoon, Sujung
    • Sleep Medicine and Psychophysiology
    • /
    • v.28 no.2
    • /
    • pp.53-69
    • /
    • 2021
  • Sleep disorders, increasingly prevalent in the general population, induce impairment in daytime functioning and other clinical problems. As changes in cortical excitability have been reported as potential pathophysiological mechanisms underlying sleep disorders, multiple studies have explored clinical effects of modulating cortical excitability through non-invasive brain stimulation in treating sleep disorders. In this study, we critically reviewed clinical studies using non-invasive brain stimulation, particularly transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), for treatment of sleep disorders. Previous studies have reported inconsistent therapeutic effects of TMS and tDCS for various kinds of sleep disorders. Specifically, low-frequency repetitive TMS (rTMS) and cathodal tDCS, both of which exert an inhibitory effect on cortical excitability, have shown inconsistent therapeutic effects for insomnia. On the other hand, high-frequency rTMS and anodal tDCS, both of which facilitate cortical excitability, have improved the symptoms of hypersomnia. In studies of restless legs syndrome, high-frequency rTMS and anodal tDCS induced inconsistent therapeutic effects. Single TMS and rTMS have shown differential therapeutic effects for obstructive sleep apnea. These inconsistent findings indicate that the distinctive characteristics of each non-invasive brain stimulation method and specific pathophysiological mechanisms underlying particular sleep disorders should be considered in an integrated manner for treatment of various sleep disorders. Future studies are needed to provide optimized TMS and tDCS protocols for each sleep disorder, considering distinctive effects of non-invasive brain stimulation and pathophysiology of each sleep disorder.