Proceedings of the Korean Institute of Intelligent Systems Conference
/
2002.05a
/
pp.87-90
/
2002
뇌파(Electroencephalogram, EEG)는 뇌 신경세포가 정보를 처리하는 과정에서 발생하는 전기적인 신호를 두피 표면에서 측정한 것이다. 이러한 뇌파는 비침습적인 방법으로 전기적인 신호를 측정하며 측정시 여러 잡파(artifact)가 섞이기 쉽다. 이러한 잡파는 뇌의 정보처리과정에 대한 유용한 정보를 담고 있는 뇌파를 분석하는데 방해가 되므로 이를 제거하기 위한 노력이 계속되어 왔다. 그러나 본 연구에서는 보다 적극적인 방향으로 잡파가 섞인 뇌파의 특성을 분석하여 이를 통해 제어 시스템 등과 같은 시스템에 적용할 수 있는 가능성을 알아보았다. 대표적인 잡파인 eye_blinking, eye_rolling, muscle 등이 각각 포함된 뇌파에 대해서 선형 및 비선형 분석을 실시함으로써 유의미한 특성 차이를 나타내었다.
We propose a real time user interface that utilizes emotion recognition by physiological signals. To improve the problem that was low accuracy of emotion recognition through the traditional EEG(ElectroEncephaloGram), We developed a physiological signals-based emotion recognition system mixing relative power spectrum values of theta/alpha/beta/gamma EEG waves and autonomic nerve signal ratio of ECG (ElectroCardioGram). We propose both a data map and weight value modification algorithm to recognize six emotions of happy, fear, sad, joy, anger, and hatred. The datamap that stores the user-specific probability value is created and the algorithm updates the weighting to improve the accuracy of emotion recognition corresponding to each EEG channel. Also, as we compared the results of the EEG/ECG bio-singal complex data and single data consisting of EEG, the accuracy went up 23.77%. The proposed interface system with high accuracy will be utillized as a useful interface for controlling the game spaces and smart spaces.
Ji, Hoon;Lee, Chung-heon;Park, Mun-Kyu;An, Young-jun;Lee, Dong-hoon
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2015.05a
/
pp.958-961
/
2015
Emotional expression is universal and emotional state impacts important areas in our life. Until now, analyzing the acquired EEG signals under circumstances caused by invoked feelings and efforts to define their emotional state have been made mainly by psychologists based on the results. But, recently emotion-related information was released by research results that it is possible to identify mental activity through measuring and analyzing the brain EEG signals. So, this study has compared and analyzed emotional expressions of human by using brain waves. To get EEG difference for a particular emotion, we showed specific subject images to the people for changing emotions that peace, joy, sadness and stress, etc. After measured EEG signals were converged into frequence domain by FFT signal process, we have showed EEG changes in emotion as a result of the performance analyzing each respective power spectrum of delta, theta, alpha, beta and gamma waves.
EEG(electroencephalogram) are measured to accurately determine the level of sleep in various sleep examinations. In general, measurements are more accurate as the number of sensor channels increases. EEG can interfere with sleep by attaching electrodes to the skin when measuring. It is necessary for self sleep care to select the minimum number of EEG channels that take into account both the user's discomfort and the accuracy of the measurement data. In this paper, we proposed a sleep stage analysis model based on machine learning and conducted experiments for using from one channel to four channels. We obtained estimation accuracy for sleep stage as following 82.28% for one channel, 85.77% for two channels, 80.33% for three channels and 68.87% for four channels. Although the measurement location is limited, the results of this study compare the accuracy according to the number of channels and provide information on the selection of channel numbers in the EEG sleep analysis.
본 논문은 의사표현이 어려운 전신마비환자의 뇌파(EEG)를 이용하여 긍정과 부정을 표현할 수 있는 방법에 대해서 소개한다. 더 나아가 인간의 감정에 따라 긍정과 부정을 민감하게 반응하는 뇌 영역을 분석하였다. 해당영역의 뇌파(EEG)변화를 측정하기 위해 컴퓨터 시스템과 접목시키는 목적도 포함하고 있다. 이를 위해서 미약한 뇌파를 증폭 시키는 전치 증폭기를 구현하였고 인공산물과 뇌파 주파수영역만을 통과시키는 아날로그 전자회로를 구현하였다. 또한 인간의 두뇌피질로부터 측정된 신호는 컴퓨터 시스템에 전송된다. 수신된 신호를 실시간 Fast Fourier Transform(FFT) 신호처리과정을 거쳐 뇌파의 주파수 영역을 분류하게 된다. 이때 분류된 뇌파를 바탕으로 인간의 긍정과 부정을 표현할 수 있는 방법을 제시한다.
Purpose : This study was performed to determine the sensitivity of neonatal electroencephalography (EEG) in detecting underlying brain disease, to compare the sensitivity and specificity of EEG with those of brain ultrasonography and to determine the prognostic value of EEG for neonatal neurologic diseases. Methods : Eighty-seven newborn babies were subjected to a electroencephalographic examination for the evaluation of underlying neurological diseases and EEGs were recorded at least before three days of life. The findings of early ultrasonography performed within three days after birth were compared with those of magnetic resonance imaging(MRI) or ultrasonography after seven days of life. Results : The EEG results were more sensitive and specific than ultrasonography for the detection of neonatal brain damage. The EEG results showed 91.7% sensitivity for mild grade neurological sequelae and 100.0% sensitivity for moderate and severe-grade neurological sequelae in predicting the neurological outcome. However, early ultrasonography results showed 20.8% and 18.8% of sensitivity and specificity, respectively. Conclusion : EEG is a highly sensitive diagnostic tool for detecting neonatal brain disease and is valuable for predicting the long-term outcome of neurologic sequelae.
Electroencephalography (EEG), a representative method of identifying temporal and spatial changes in brain activity, is a voluntary electrical activity measurable in the human scalp. Various interface technologies have been provided to control EEG activity, and it is possible to operate a machine such as a wheelchair or a robot through brainwaves. The characteristics of EEG data are collected in various types of channels in real time, and a server system for analyzing them is required to have an independent and lightweight system for the platform. In these days, the Spring platform is used as a large business server as an independent, lightweight server system. In this paper, we propose an EEG analysis system using the Spring server system. Using the proposed system, the reliability of EEG control can be enhanced, and analysis and control interface expansion can be provided in various aspects such as game and medical areas.
Electroencephalograph(EEG) information, which is an important data of brain science, reflects various levels of information from the molecular level to the behavior and cognitive stages, and the explosively amplified information is provided at each stage. Therefore, EEG information is an intrinsic privacy area of an individual, which is important information to be protected. In this paper, we apply spring security to web based system of spring MVC (Model, View, Control) framework to build independent and lightweight server system with powerful security system. Through the proposal of the platform type EEG analysis system which enhances the security function, the web service security of the EEG information is enhanced and the privacy of the EEG information can be protected.
Recently, in the U-health area, there are research related on monitoring brainwaves in real-time for coping with emergent situations like the fatigue driving, cerebral infarction or the heart attack of not only the patients but also the normal elderly folks by transmitting of the EEG(Electroencephalograph). This system could be applied to hospitals or sanatoriums. In this paper, it is applied for the vehicular ad-hoc network to prevent the car accident in advance by monitoring the brainwaves of a driver in real-time. In order to do this, I used mobile ad-hoc nodes supported in the Opnet simulator for the efficient EEG brainwave transmission in the VANET environment. The vehicular ad-hoc networks transmitting the brainwaves to the nearest road-side unit are designed and simulated to draw an efficient and proper vehicular ad-hoc network environment.
KIPS Transactions on Software and Data Engineering
/
v.10
no.12
/
pp.587-594
/
2021
As the diagnosis using encephalography(EEG) has been expanded, various studies have been actively performed for classifying EEG automatically. This paper proposes a CNN model that can effectively classify EEG signals acquired from healthy persons and patients with epilepsy. We segment the EEG signals into sub-signals with smaller dimension to augment the EEG data that is necessary to train the CNN model. Then the sub-signals are segmented again with overlap and they are used for training the CNN model. We also propose ensemble strategy in order to improve the classification accuracy. Experimental result using public Bonn dataset shows that the CNN can detect the epileptic seizure with the accuracy above 99.0%. It also shows that the ensemble method improves the accuracy of 3-class and 5-class EEG classification.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.