본 논문의 목적은 측정된 뇌자도 신호의 잡음제거 및 분석을 목적으로 하는 뇌자도 신호처리 시스템의 개발이다. 뇌자도 신호의 크기는 매우 작고 외부 노이즈 환경에 민감하게 반응하기 때문에 다양한 신호처리 기법을 이용하여 뇌자도 신호의 신뢰성을 높이는 것이 중요하다. 본 논문에서는 40채널 SQUID 시스템을 이용하여 뇌에서 발생하는 자기 신호를 측정하고, 측정된 데이터에 존재하는 노이즈 성분을 선형필터와SQUID 시스템의 레퍼런스 채널을 이용하여 제거하며, 이를 분석하는 뇌자도 신호처리 시스템을 개발하였다. 실제로 청각자극을 이용하여 뇌자도 신호를 측정, 분석 함으로써 개발된 뇌자도 신호처리 시스템의 신뢰성을 확인하였다. 또한 측정한 뇌자도 신호에서 주파수 대역에 따른 뇌자도 신호의 분포를 Map으로 구성하였으며, dipole source의 위치를 표시하였다.
본 논문의 목적은 음주섭취로 인한 혈중 알코올 농도에 따른 뇌의 활동도변화를 측정, 분석하는데 있다. 1차원 시계열데이터인 EEG신호는 생체 비선형 동역학 시스템으로부터 발생하는 Deterministic Nonlinear Chaos신호로써 무작위적인 신호와는 구분되어질 수 있다. EEG시계열데이터를 위상공간에 적절한 어트랙터로 재구성하여 상관차원 최대발산지수 등의 카오스 지수들을 추출하여보면 EEG시계열데이터가 무작위적인 계에서 발생하는 랜덤한 신호가 아닌 카오스계에서 기인함을 알 수 있고, 인간의 정신상태에 따른 뇌의 활동도를 정성적, 정량적으로 판별해 볼 수 있다. 이러한 카오스 분석방법을 토대로 음주전의 뇌의 활동도와 음주후 혈중알코올 농도에 따른 뇌의 활동도변화를 EEG의 카오스 지수들의 변화를 통해 분석해 보았다.
In this paper, we studied the brain-computer interface (BCI). BCIs help severely disabled people to control external devices by analyzing their brain signals evoked from motor imageries. The findings in the field of neurophysiology revealed that the power of $\beta$(14-26 Hz) and $\mu$(8-12 Hz) rhythms decreases or increases in synchrony of the underlying neuronal populations in the sensorymotor cortex when people imagine the movement of their body parts. These are called Event-Related Desynchronization / Synchronization (ERD/ERS), respectively. We implemented a BCI-based mouse interface system which enabled subjects to control a computer mouse cursor into four different directions (e.g., up, down, left, and right) by analyzing brain signal patterns online. Tongue, foot, left-hand, and right-hand motor imageries were utilized to stimulate a human brain. We used a non-invasive EEG which records brain's spontaneous electrical activity over a short period of time by placing electrodes on the scalp. Because of the nature of the EEG signals, i.e., low amplitude and vulnerability to artifacts and noise, it is hard to analyze and classify brain signals measured by EEG directly. In order to overcome these obstacles, we applied statistical machine-learning techniques. We could achieve high performance in the classification of four motor imageries by employing Common Spatial Pattern (CSP) and Linear Discriminant Analysis (LDA) which transformed input EEG signals into a new coordinate system making the variances among different motor imagery signals maximized for easy classification. From the inspection of the topographies of the results, we could also confirm ERD/ERS appeared at different brain areas for different motor imageries showing the correspondence with the anatomical and neurophysiological knowledge.
Proceedings of the Korea Society of Information Technology Applications Conference
/
2002.11a
/
pp.461-467
/
2002
Signals reduced from the brain had been considered as a noise that is caused by the stochastic process until 1980. The recent non-linear dynamic theory researches, however, reported that these signals are meaningful and deterministic chaos signals in which they show how the brain deals with various information Since this report, a wide range of researches has been carried out and still in progress. Thus, by using the correlational dimension, one of the non-linear analytical methods, the characteristics of the brain signals can be analyzed. In this thesis, the scent of lavender, which stimulates the olfactory sense, is introduced to measure EEG with the International 10-20 electrode system on 16 channels, and to analyze the interrelationship between the original signals before the stimulation and the changed signals after the stimulation. Finally, the effect of the scent stimulation to the brain is analyzed. The purpose of this thesis is to apply these analyzed results to the computerized mapping of the brain signals and possible ways of specifying the source of the brain signals through various medical applications.
Proceedings of the Korea Society for Industrial Systems Conference
/
2002.11a
/
pp.461-467
/
2002
Signals produced from the brain had been considered as a noise that is caused by the stochastic process until 1980. The recent non-linear dynamic theory researches, however, reported that these signals are meaningful and deterministic chaos signals in which they show how the brain deals with various information Since this report a wide range of researches has been carried out and still in progress. Thus, by using the correlational dimension, one of the non-linear analytical methods, the characteristics of the brain signals can be analyzed. In this thesis, the scent of lavender, which stimulates the olfactory sense, is introduced to measure EEG with the International 10-20 electrode system on 16 channels, and to analyze the interrelationship between the original signals before the stimulation and the changed signals after the stimulation. Finally, the effect of the scent stimulation to the brain is analyzed. The purpose of this thesis is to apply these analyzed results to the computerized mapping of the brain signals and possible ways of specifying the source of the brain signals through various medical applications.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2001.05a
/
pp.179-182
/
2001
인체 활동에 따라 우리 몸에는 다양한 전기적 생체신호가 발생하며 특히 뇌의 활동에 따라 발생되는 뇌파(EEG)는 비침습적 방법으로 측정될 수 있는 장점 때문에 뇌기능 연구 및 임상 등에서 널리 사용되어지고 있다. 또한 임상에서는 주로 뇌 신경계 질환환자의 병인 규명 및 기전 연구를 위하여 뇌파가 사용되어지고 있다. 최근에는 컴퓨터 발달에 따라 카오스, 비선형 이론 등의 다양한 방법으로 복잡한 시계열 신호인 뇌파를 분석하는 기법들이 개발되어 뇌파의 특징점을 찾아 임상에 활용하거나 뇌기능 연구에 적용하려는 연구가 진행되고 있다. 본 논문에서는 잡화(artifact)가 섞여 있는 뇌파신호 및 artifact가 제거된 다음 재구성된 뇌파신호(reconstructed EEG signal), 그리고 독립성분으로 분리된 각각의 신호에 대하여 특징점을 찾기 위하여 비선형 및 선형 분석을 실시하여 유의한 차이점을 밝혔다.
Communications of the Korean Institute of Information Scientists and Engineers
/
v.22
no.2
/
pp.45-51
/
2004
인간과 컴퓨터의 연결에 인간의 두뇌에서 발생하는 신호를 계측하여 원하는 목적에 이용하는 brain computer interface(BCI)에 관한 연구가 최근에 활발히 이루어지고 있다[1]. BCI는 뇌에서 발생하는 뇌파 신호의 해석 및 분석을 통하여 뇌와 컴퓨터 간에 통신 채널을 형성함으로써 사람이 입, 눈, 손 등의 근육 움직임을 통하지 않고 상호간에 정보를 전달할 수 있도록 하는 인터페이스 방법이다.
Oscillatory magnetic fields produced in the brain due to neuronal activity can be measured by the sensor. Magnetoencephalography (MEG) is a non-invasive technique to record such neuronal activity due to excellent temporal and fair amount of spatial resolution, which gives information about the brain's functional activity. Potential utilization of high spatial resolution in MEG is likely to provide information related to in-depth brain functioning and underlying factors responsible for changes in neuronal waves in some diseases under resting state or task state. This review is a comprehensive report to introduce statistical models from MEG data including graphical network modelling. It is also meaningful to note that statisticians should play an important role in the brain science field.
The Journal of the Korea institute of electronic communication sciences
/
v.19
no.1
/
pp.137-142
/
2024
Recently, deep learning technology has become those methods as de facto standards in the area of medical data representation. But, deep learning inherently requires a large amount of training data, which poses a challenge for its direct application in the medical field where acquiring large-scale data is not straightforward. Additionally, brain signal modalities also suffer from these problems owing to the high variability. Research has focused on designing deep neural network structures capable of effectively extracting spectro-spatio-temporal characteristics of brain signals, or employing self-supervised learning methods to pre-learn the neurophysiological features of brain signals. This paper analyzes methodologies used to handle small-scale data in emerging fields such as brain-computer interfaces and brain signal-based state prediction, presenting future directions for these technologies. At first, this paper examines deep neural network structures for representing brain signals, then analyzes self-supervised learning methodologies aimed at efficiently learning the characteristics of brain signals. Finally, the paper discusses key insights and future directions for deep learning-based brain signal analysis.
Kim, D.W.;Beack, S.H.;Paek, S.E.;Kwon, S.T.;Moon, D.Y.;Park, H.J.
Proceedings of the KIEE Conference
/
2007.07a
/
pp.1912-1913
/
2007
뇌 기계 인터페이스는 뇌에 직접 연결을 시도하는 인터페이스로서 인간의 의지 또는 생각을 컴퓨터가 인식할 수 있는 디지털 신호로 바꾸는 새로운 휴먼 컴퓨터 인터페이스 중 하나이다. 뇌신경의 신호 전달 과정이 전기적, 화학적 특성을 지닌다는 사실에 착안하여 뇌의 활동을 측정하는 많은 기술들이 개발되어 왔다. PET, fMRI, MEG, EEG 등을 포괄하는 brain functional imaging 기술 중 뇌 기계 인터페이스에서 가장 주목하고 있는 것이 바로 EEG 이다. 본 연구에서는 뇌기계 인터페이스 시스템 개발에 필요한 무선 EEG 측정 장치를 설계하고, 무선 EEG 측정 장치와 컴퓨터간에 데이터 전송과 EEG 신호를 FFT 분석 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.