• 제목/요약/키워드: 뇌기반 학습

검색결과 80건 처리시간 0.029초

전산화단층영상 기반 뇌출혈 검출을 위한 YOLOv5s 성능 평가 (Performance Evaluation of YOLOv5s for Brain Hemorrhage Detection Using Computed Tomography Images)

  • 김성민;이승완
    • 한국방사선학회논문지
    • /
    • 제16권1호
    • /
    • pp.25-34
    • /
    • 2022
  • 뇌 전산화단층촬영은 비침습성, 3차원 영상 제공, 저방사선량 등의 장점 때문에 뇌출혈과 같은 질병 진단을 위해 시행된다. 하지만 뇌 전산화단층영상 판독을 위한 전문의의 인력 공급 부족 및 막대한 업무량으로 인해 수많은 판독 오류 및 오진이 발생하고 있다. 이와 같은 문제를 해결하기 위해 객체 검출을 위한 다양한 인공지능 기술이 개발되고 있다. 본 연구에서는 뇌 전산화단층영상으로부터 뇌출혈 검출을 위한 딥러닝 기반 YOLOv5s 모델의 적용 가능성을 확인하였다. 또한 YOLOv5s 모델 학습 시 초매개변수를 변화시켜 학습된 모델의 성능을 평가하였다. YOLOv5s 모델은 backbone, neck 및 output 모듈로 구성하였고, 입력 CT 영상 내 뇌출혈로 의심되는 부위를 검출하여 출력할 수 있도록 하였다. YOLOv5s 모델 학습 시 활성화함수, 최적화함수, 손실함수 및 학습 횟수를 변화시켰고, 학습된 모델의 뇌출혈 검출 정확도 및 학습 시간을 측정하였다. 연구결과 학습된 YOLOv5s 모델은 뇌출혈로 의심되는 부위에 대한 경계 박스 및 해당 경계박스에 대한 정확도를 출력할 수 있음을 확인하였다. Mish 활성화함수, stochastic gradient descent 최적화함수 및 completed intersection over union 손실함수 적용 시 YOLOv5s 모델의 뇌출혈 검출 정확도 향상 및 학습 시간이 단축되는 결과를 확인하였다. 또한 YOLOv5s 모델의 뇌출혈 검출 정확도 및 학습 시간은 학습 횟수에 비례하여 증가하는 결과를 확인하였다. 따라서 YOLOv5s 모델은 뇌 전산화단층영상을 이용한 뇌출혈 검출을 위해 활용할 수 있으며, 최적의 초매개변수 적용을 통해 성능을 향상 시킬 수 있다.

Deep Learning-Based Brain Tumor Classification in MRI images using Ensemble of Deep Features

  • Kang, Jaeyong;Gwak, Jeonghwan
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권7호
    • /
    • pp.37-44
    • /
    • 2021
  • 뇌 MRI 영상의 자동 분류는 뇌종양의 조기 진단을 하는 데 있어 중요한 역할을 한다. 본 연구에서 우리는 심층 특징 앙상블을 사용한 MRI 영상에서의 딥 러닝 기반 뇌종양 분류 모델을 제안한다. 우선 사전 학습된 3개의 합성 곱 신경망을 사용하여 입력 MRI 영상에 대한 심층 특징들을 추출한다. 그 이후 추출된 심층 특징들은 완전 연결 계층들로 구성된 분류 모듈의 입력 값으로 들어간다. 분류 모듈에서는 우선 3개의 서로 다른 심층 특징들 각각에 대해 먼저 완전 연결 계층을 거쳐 특징 차원을 줄인다. 그 이후 3개의 차원이 준 특징들을 결합하여 하나의 특징 벡터를 생성한 뒤 다시 완전 연결 계층의 입력값으로 들어가서 최종적인 분류 결과를 예측한다. 우리가 제안한 모델을 평가하기 위해 웹상에 공개된 뇌 MRI 데이터 셋을 사용하였다. 실험 결과 우리가 제안한 모델이 다른 기계학습 기반 모델보다 더 좋은 성능을 나타냄을 확인하였다.

대학 프로그래밍 수업에 뇌-친화적 학습 원리의 적용 (Applying Brain-Compatible Learning Principles to a University Programming Class)

  • 최숙영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 추계학술대회
    • /
    • pp.635-637
    • /
    • 2017
  • '프로그래밍은 어렵다'라는 인식이 학습자들 가운데 퍼져있다. 실제로 대학교육에서 프로그래밍 수업의 중도 포기율이 다른 강좌들에 비해 높은 것을 볼 수 있다. 따라서 학습자들이 프로그래밍을 왜 어렵게 생각하는지 인지적인 측면의 분석을 통해 그에 대한 적절한 교수 전략이 필요하다. 최근에 뇌과학의 발달을 통해 뇌가 어떻게 학습하고 어떤 상황에서 가장 효과적으로 활동하는지 파악하여 적절한 학습 환경을 구축하기 위한 뇌친화적 학습에 대한 연구들이 진행되고 있다. 본 연구에서는 뇌친화적인 학습 원리를 기반으로 하여 프로그래밍 수업에 대한 교수 설계를 하였다.

  • PDF

딥 뉴럴 네트워크의 적절한 구조 및 자가-지도 학습 방법에 따른 뇌신호 데이터 표현 기술 분석 및 고찰 (Analysis and Study for Appropriate Deep Neural Network Structures and Self-Supervised Learning-based Brain Signal Data Representation Methods)

  • 고원준
    • 한국전자통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.137-142
    • /
    • 2024
  • 최근, 의료 데이터 표현 분야에서 딥러닝 방법들이 사실상의 표준으로 자리잡고 있다. 하지만, 딥러닝 기술은 내재적으로 많은 양의 학습 데이터를 필요로 하므로 대규모의 데이터를 확보하기 쉽지 않은 의료 분야에서는 직접적인 적용이 어려운 실정이다. 특히 뇌신호 모달리티의 경우, 변동성이 크기 때문에 여전히 데이터 부족 문제를 가진다. 이에, 최근 연구에서는 뇌신호의 시간-공간-주파수 특징을 적절하게 추출할 수 있는 딥 뉴럴 네트워크 구조를 설계하거나, 혹은 자가-지도 학습 방법을 도입하여 뇌신호의 신경생리학적 특징을 미리 학습하도록 한다. 본 논문에서는, 최근 각광받는 기술인 뇌-컴퓨터 인터페이스 및 피험자 상태 예측 등의 관점에서 소규모데이터를 다루기 위해 적용되는 방법론에 대한 분석 및 향후 기술 방향성을 제시한다. 먼저 현재 제안되고 있는 뇌신호 표현을 위한 딥 뉴럴 네트워크 구조에 대해 분석한다. 또한 뇌신호의 특성을 잘 학습하기 위한 자가-지도 학습 방법론을 분석한다. 끝으로, 딥러닝 기반 뇌신호 분석을 위한 중요 시사점 및 방향성에 관하여 논한다.

2 단계 결정트리 학습을 이용한 뇌 자기공명영상 분류 (Classification of Brain Magnetic Resonance Images using 2 Level Decision Tree Learning)

  • 김형일;김용욱
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권1호
    • /
    • pp.18-29
    • /
    • 2007
  • 본 논문에서는 뇌 자기공명영상을 분류하기 위하여 결정트리 알고리즘을 2 단계로 적용하는 영상 분류 시스템을 제안한다. 영상으로부터 얻을 수 있는 정보에는 두 종류가 있다. 하나는 크기, 색상, 질감, 윤곽선 등 영상으로부터 직접 얻을 수 있는 하위레벨 특징들이고, 다른 하나는 특정 객체의 존재 유무, 여러 부위 사이의 공간적 관계 등 분할된 영상들에 대한 해석을 통해서 얻을 수 있는 상위레벨 특징들이다. 의미에 따라 영상을 분류하기 위해서는 상위레벨 특징들을 기반으로 학습 및 분류가 수행되어야 한다. 제안하는 시스템에서는 결정트리 학습을 각각의 레벨에 개별적으로 적용하며, 하위레벨 분류 결과를 이용하여 상위레벨의 특징을 추출한다. 종양이 있는 뇌 자기공명영상 집합에 대하여 분류 실험을 수행하였으며, 몇 가지 실험 결과를 통해 제안된 시스템의 효과를 확인하였다.

쥐 해마의 유전자 발현 그리드 데이터를 이용한 특징기반 유전자 분류 및 영역 군집화 (Feature-based Gene Classification and Region Clustering using Gene Expression Grid Data in Mouse Hippocampal Region)

  • 강미선;김혜련;이석찬;김명희
    • 정보과학회 논문지
    • /
    • 제43권1호
    • /
    • pp.54-60
    • /
    • 2016
  • 뇌의 유전자 발현 정보는 영역별 기능과 밀접한 관련이 있어 이를 분석하기 위해 다수의 유전자들 간의 발현 정도 및 발현 위치 정보와의 관계에 대한 연구가 이루어지고 있다. 본 논문에서는 컴퓨터 기술을 통해 알렌 뇌과학연구소에서 제공하는 약 2만여개의 쥐 뇌 유전자 발현 정보 중 뇌의 해마 영역을 중점적으로 분석하여 유전자들을 자동으로 분류해내고 발현 위치 정보를 기반으로 군집화하여 가시화하는 방법을 제안한다. 이를 통해 해마 내 전체적으로 발현되는 유전자들과 특정 영역에만 발현되는 유전자들을 분류할 수 있었고 그 중 특정 영역에 발현되는 유전자들의 위치정보 기반으로 군집화된 데이터를 뇌 지도와 함께 관찰 할 수 있었다. 본 연구는 뇌의 기능과 영역과의 관계성 관련 생물학적 연구를 위한 실험군 선정작업에 이용되어 실험설계시간을 줄일 수 있고 기존에 알려진 뇌의 해부학적 구조보다 더욱 세분화된 구조를 발견할 수 있는 가능성을 제시할 것으로 기대된다.

뇌기반 진화적 과학 교수학습 모형의 개발 (Development of a Model of Brain-based Evolutionary Scientific Teaching for Learning)

  • 임채성
    • 한국과학교육학회지
    • /
    • 제29권8호
    • /
    • pp.990-1010
    • /
    • 2009
  • 이 연구에서는 뇌기반 진화적 교육 원리를 도출하기 위하여, 인간 뇌의 구조적 기능적 특징, 개체간과 개체내에서 일어나는 생물학적 진화, 뇌내에서 일어나는 진화적 과정, 과학 자체와 개별 과학자의 과학적 활동에 내재된 진화적 속성에 관한 연구물을 리뷰하였다. 이렇게 하여 도출된 인간 뇌의 주요 특징과 생성-선택-파지를 핵심 요소로 하는 보편 다윈주의 혹은 보편 선택주의를 토대로, 뇌기반 진화적 과학 교수 학습 모형을 개발하였다. 이 모형은 세 가지 요소와 세 가지 단계 및 평가로 이루어진다. 세 가지 요소는 정의적, 행동적, 인지적 요소이고, 각 요소를 구성하는 세 단계는 다양화 $\rightarrow$ 비교 선택 $\rightarrow$ 확장 적용(ABC-DEF; Affective, Behavioral, Cognitive components - Diversifying$\rightarrow$Emulating, Estimating, Evaluating $\rightarrow$ Furthering steps)이다. 이 모형에서 정의적 요소 (A)는 인간 뇌에서 감성을 관장하는 대뇌변연계에 토대를 두고 자연 사물과 현상에 대한 학습자의 흥미 호기심과 관련된다. 행동적 요소(B)는 시각 정보를 처리하는 후두엽, 언어 정보의 이해.생성과 관련된 측두엽, 감각운동 정보를 처리하는 감각운동령을 수반하고 과학적 활동의 직접 해보기와 관련된다. 인지적 요소(C)는 사고, 계획, 판단, 문제해결과 관련된 전두엽합령에 토대를 둔다. 이 모형은 이러한 측면에서 '뇌기반(brain-based)'이다. 이 모형의 세 가지 각 요소를 구성하는 세 단계에서, 다양화 단계(D)는 각 요소에서 다양한 변이체를 생성하는 과정이고, 가치나 유용성에 비추어 비교.선택하는 단계(E)는 변이체들 중 유용하거나 가치 있는 것을 검증하여 선택하는 과정이며, 확장.적용 단계(F)는 선택된 것을 유사한 상황으로 확장하거나 적용하는 단계이다. 이 모형은 이러한 측면에서 '진화적(evolutionary)'이다. ABC 세 요소에 대해, 과학적 활동에서 감성적 요인이 출발점으로 갖는 중요성과 뇌에서 사고 기능과 관련되는 신피질에 비해 감성을 관장하는 대뇌변연계의 우세한 역할을 반영하여 DARWIN (Driving Affective Realm for Whole Intellectual Network) 접근법을 강조한다. 이 모형은 학교 현장에서 다루는 과학 주제와 학생의 특징에 따라 다양한 형태와 수준으로 융통성 있게 실행될 수 있다.

인공신경회로망을 이용한 F-18-FDG 뇌 PET의 간질원인병소 자동해석 (Automatic Interpretation of Epileptogenic Zones in F-18-FDG Brain PET using Artificial Neural Network)

  • 이재성;김석기;이명철;박광석;이동수
    • 대한의용생체공학회:의공학회지
    • /
    • 제19권5호
    • /
    • pp.455-468
    • /
    • 1998
  • 이 연구에서는 간질 환자의 F-18-FDG 뇌 PET 영상을 공간정규화 기법으로 표준지도 위에 정규화한 후 표준지도의 해부학적 위치 정보를 이용하여 뇌기능영상의 영역을 자동적으로 분할하고 각 해부학적 위치의 F-18-FDG 섭취율을 추출하였다. 뇌 각 영역의 F-18-FDG 섭취율을 데이터베이스화한 것을 입력으로 하는 인공신경회로망을 구성하고 학습시켜 핵의학 전문의가 판독한 결과와 얼마나 일치되는지를 분석하였다. 핵의학 전문의 2명이 좌측측두엽간질(112명), 우측측두엽간질(81명) 혹은 정상(64명)으로 판독한 F-18-FDG 뇌 PET 영상을 대상으로, 학습의 치우침을 줄이기 위해 각 질환 군에서 동일한 수(40명)를 선택하여 학습군을 구성하고 학습군을 제외한 정상 24명, 좌측측두엽간질 72명, 우측 측두엽간질 41명의 F-18-FDG PET을 시험군으로 하였다. 모든 영상을 SPM76을 이용하여 MNI 표준지도 위에 공간정규화하고 전체 뇌영역의 평균 계수를 100으로 정규화하였다. 영역 분할 프로그램을 개발하여 표준지도를 34개 영역으로 분할하고 모든 영상에서 각 뇌영역엔 대한 평균 계수를 추출하였다. 비선형 패턴분류에 효과적인 다층퍼셉트론 신경회로망 모델을 써서 오류역전파 알고리즘으로 학습시켰다. 한 층의 은닉층을 부여하고 은닉층의 뉴런 수를 5개부터 차츰 늘려가며 최적의 개수를 선택하였다. 초기 가중치와 바이어스 값은 무작위 값을 갖게 하였다. 출력단은 세 개의 뉴런을 갖고 각 뉴런은 입력이 정상이면 [1 0 0], 좌측측두엽간질이면 [0 1 0], 우측측두엽간질이면 [0 1 0]의 값을 탐 값으로 하였다. 뉴런의 활성화 함수는 시그모이드 함수를 사용하였다. 입력단은 17개의 뉴런으로 구성하고 서로 마주보는 뇌영역의 계수 타이(오른쪽-왼쪽)를 입력으로 하였다 회로망의 학습 횟수를 10,000번으로 제한하여 오타의 허용치를 1로 설정하고 학습 횟수가 넘거나 오차가 허용치보다 작을 때 학습을 중단하게 하였다. 모멘텀과 적응형 학습율을 사용하여 신경회로망의 성능을 향상시키고 학습 속도를 빠르게 하였다. 모든 PET 영상에서 성공적으로 공간정규화 파라메터를 추출하여 표준지도에 정규화할 수 있었다 다층퍼셉트론 모델을 기반으로 한 인공신경회로망으로 27개의 은닉층 뉴런을 사용했을 때 최적의 결과를 얻을 수 있었다. 학습군에 대해서 1508번의 반복 학습을 시킨 결과 오차율 0%인 신경 회로망을 얻었으며 시험군에 대해 적용한 결과 전문가의 판독결과와 80.3%의 일치율을 보였다. 은닉층의 뉴런 수가 10개나 30개인 경우에도 학습군에 대해 오타율 0%인 신경회로망을 얻을 수 있었으며 이때의 시험군에 대한 일치율 역시 75∼80%의 값을 보였다.

  • PDF

뇌전도 기반 마우스 제어를 위한 동작 상상 뇌 신호 분석 (Motor Imagery Brain Signal Analysis for EEG-based Mouse Control)

  • 이경연;이태훈;이상윤
    • 인지과학
    • /
    • 제21권2호
    • /
    • pp.309-338
    • /
    • 2010
  • 본 논문에서는 사지가 마비되어 신체를 움직이지 못하지만 뇌의 기능은 살아있는 장애인들을 위하여, 생각만으로 외부의 장치를 제어할 수 있도록 하는 뇌-컴퓨터 인터페이스(BCI: Brain-Computer Interface) 기술을 연구하였다. 신경생리학 분야에서의 연구 결과에 의하면, 신체를 움직이는 상상을 할 경우, 뇌의 운동/감각 피질 영역에서는 $\beta$파(14-26 Hz)와 $\mu$파(8-12 Hz)가 억제/증가되는 ERD/ERS(Event-Related Desynchronization / Synchronization) 현상이 발생한다고 알려져 있다. 본 연구에서는 이를 기반으로 혀, 발, 왼손, 오른손의 동작 상상을 자극으로 이용하여 변화하는 뇌 신호 패턴을 실시간으로 분석하여 피험자의 생각을 읽을 수 있도록 하였으며, 상 하 좌 우의 네 방향으로 이동할 수 있도록 하는 마우스 제어 인터페이스를 구현하였다. 동작 상상 시 발생하는 뇌 신경 활동의 변화를 관측하기 위해서 뇌에 손상을 주지 않으면서도 높은 시간 해상도로 측정이 가능한 비침습적 뇌전도(EEG: ElectroEncephaloGraphy)를 이용하였다. 그러나 뇌전도 신호는 특성상 신호의 크기가 미약하고, 잡음의 영향을 많아 분석이 어렵다. 따라서 이를 극복하기 위해 통계적 방법을 기반으로 한 기계학습 기법인 CSP(Common Spatial Pattern)와 선형판별 분석(Linear Discriminant Analysis)을 이용하여 서로 다른 동작 상상에 의해 발생하는 뇌 신호들 간의 분산이 최대가 되도록 신호를 변환하여 인식 성능을 높일 수 있었다. 또한 분석된 뇌 신호의 시각화를 통해, 기존에 알려진 뇌의 해부학적, 신경생리학적 지식과 일치하는 ERD/ERS 현상이 발생하는 것을 확인할 수 있었다.

  • PDF

디지털 학습자료에 대한 교육신경학적 이해와 교육적 시사점 (Education-neurological Understanding of Digital Learning Materials and Implications for Education)

  • 조주연;김미현
    • 정보교육학회논문지
    • /
    • 제24권6호
    • /
    • pp.539-550
    • /
    • 2020
  • 이 연구는 뇌과학과 교육을 접목하는 교육신경학의 관점에 기초한 연구이다. 이 관점에 기초하여 디지털 학습자료 활용의 뇌과학적 근거를 확인함과 아울러 교육적 시사점을 도출하는 것을 연구의 목적으로 하였다. 이 연구에서 얻어진 결과를 결론으로 제시하면, 다음과 같다. 첫째, 디지털 학습자료를 통한 다양한 감각 자극은 다중감각신경, 상구 심층부 등을 거치며 협동적 정보처리를 가능하게 한다. 둘째, 디지털 학습자료로 인한 간접경험은 거울신경계를 거쳐 학습 내용을 생생하게 이해하도록 도와준다. 셋째, 디지털 학습자료들이 일으킨 긍정적인 감정은 도파민, 망상활성체계, 전두 선조체, 대뇌 피질 등의 기능을 활성화시켜 준다. 이 연구의 결과를 통해 제시되는 교육적 시사점은 다음과 같다. 첫째, 교사는 디지털 학습자료를 선정할 때 표현 양식, 학습 내용, 수업의 흐름 및 역기능 측면까지 고려해야 한다. 둘째, 수업 장면에 따라 다양한 디지털 학습자료를 호기심과 즐거움의 유발, 흥미와 노력의 유지, 학습한 내용에 대한 복습의 목적으로 사용하는 것은 수업 효과를 위해 바람직하다.