• Title/Summary/Keyword: 뇌관

Search Result 167, Processing Time 0.023 seconds

Considerations on the Safety of Electric Caps Based on Measured Electrical Resistivity of Rock Samples (암석의 전기비저항 측정을 통한 전기뇌관의 사용 안전성 검토)

  • Choi, Byung-Hee;Ryu, Chang-Ha;Shin, Seung-Wook;Kim, Soo-Lo
    • Explosives and Blasting
    • /
    • v.34 no.4
    • /
    • pp.19-27
    • /
    • 2016
  • Much care should be taken when electric caps are used in blast site than when non-electric initiation systems are used. This is because electric caps can cause premature firing or misfires if stray currents of high magnitude flow into the blasting circuit. If the rock has higher electrical conductivity or lower electrical resistivity, such risks will be increased because the rock will provide more passages for the stray currents to flow into the blasting circuit. In this study, several rock samples obtained at a blast site were tested for electrical resistivity to decide whether electric caps could be used or not in the site. The measured electrical resistivity was $39{\sim}47{\Omega}{\cdot}m$ for the rock samples that had a higher content of metal sulfides. Contrary, the resistivity was $15000{\sim}21000{\Omega}{\cdot}m$ for ordinary rocks. Especially, in the case of the rock of electric resistivity of $39{\Omega}{\cdot}m$, only 2-V electric potential enables a stray current to flow through the rock of 1-m length, which can cause the premature firing of a detonator whose initiation current is 0.4 A. This result shows that electric initiation system should not be used in the site because rocks containing much amount of metal sulfides are widely distributed there.

Repair of Acute Aortic Arch Dissection with Hypothermic Circulatory Arrest and Retrograde Cerebral Perfusion (저체온순환정지와 역행성 뇌관류에 의한 대동맥궁을 침범한 급성 대동맥 박리증의 수술결과)

  • 이삼윤
    • Journal of Chest Surgery
    • /
    • v.37 no.1
    • /
    • pp.43-49
    • /
    • 2004
  • Background: Acute thoracic aortic dissections involving the aortic arch differ in diagnosis, surgical procedures, and operative results compared to those that do not involve the aortic arch. In general cerebral perfusion under deep hypothermic circulatory arrest (HCA) is performed during the repair of the aortic arch dissection. Here, we report our surgical results of the aortic arch dissection repair using retrograde cerebral perfusion (RCP) and its safety. Material and Method: Between January 1996 and June 2002, 22 consecutive patients with aortic arch dissection underwent aortic arch repair. In 20 of them RCP was performed under HCA. RCP was done through superior vena cava in 19 patients and by systemic retrograde venous perfusion in 1, in whom it was difficult to reach the SVC. When the patient's rectal temperature reached 16 to 18$^{\circ}C$, systemic circulation was arrested, and the amount of RCP amount was 481.1 $\pm$292.9 $m\ell$/min with perfusion pressure of 20∼30 mmHg. Result: There were two in-hospital deaths (4.5%) and one late death (9.1%). Mean circulatory arrest time (RCP time) was 54.0$\pm$ 13.4 minutes (range, 7 to 145 minutes). RCP time has no correlation with the appearance of consciousness, recovery of orientation, or ventilator weaning time (p=0.35, 0.86, and 0.92, respectively). Ventilator weaning was faster in patients with earlier recovery of consciousness and orientation (r=0.850, r=926; p=0.000, respectively). RCP of more than 70 minutes did not affect the appearance of consciousness, recovery of orientation, ventilator weaning time, exercise time, or hospital stay (p=0.42, 0.57, 0.60, 0.83, and 0.51, respectively). Conclusion: Retrograde cerebral perfusion time under hypothermic circulatory arrest during repair of aortic arch dissection may not affect recovery of orientation, ventilator weaning time, neurologic complications, and postoperative recovery.

A study on full-face sequential blasting using electronic detonator (전자뇌관을 이용한 수직구 전단면 다단시차 분할 발파에 대한 연구)

  • Yoon, Ji-Sun;Kim, Su-Hyun;Bae, Sang-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.2
    • /
    • pp.177-184
    • /
    • 2008
  • In this study, in order to reduce appeals regarding vibration and noise from blasts, the optimum delay-time of the electronic detonator, which can minimize blast vibration, is found through blast-waveform composition and blasting simulation, and we have developed the full-face Sequential Blasting Method based on the studies of damping properties of full-face section blasting. The optimum delay-time of the electronic detonator and Full-face Sequential Blasting Method using electronic detonator was applied to the Gyeongbu high-speed railway construction site to test the feasibility of this method.

  • PDF

A Case Study of Applying Electronic Detonator in Limestone Quarry (석회석 광산에서 전자뇌관의 적용성에 관한 연구)

  • ;;;Dave Kay
    • Explosives and Blasting
    • /
    • v.22 no.2
    • /
    • pp.1-11
    • /
    • 2004
  • 일반적으로 국내 석회석 광산에서의 발파는 20ms나 25ms 시차를 가지는 지발발파로 시행되어지고 있다. 국외에서는 전자뇌관을 사용하여 암반의 지질학적인 특성에 따라 지발 시차를 사용자의 현장에 따라 선정하여, 주변 보안 물건에 따른 진동 및 소음을 경감하면서, 1회 발파의 생산량을 증대할 수 있으며, 2차 파쇄 비용 및 적재비용을 절감하는 최적의 시차를 적용하여 발파 규모를 줄이지 않는 발파패턴을 적용하고 있다. 본 연구는 해외에서 사용되고 있는 전자뇌관을 국내 현장 석회석 광산(단양)에 적용함으로 최적지연시차를 찾아내는 방법과 초시의 오차에 따른 문제점과 향후 국내 적용성을 판단하고자 하였다. 대규모 석회석 광산을 대상으로 최적시차를 판단하고자 동일 패턴에서 시차를 6ms ~ 30ms로 시험발파를 시행하여 4가지 요소 발파진동속도, 주 주파수특성, 파쇄입도, 암석 이동 및 버력의 상태를 분석하여 각 시차에 따른 배점을 두어, 당 현장에 요구되는 개별 가중치를 선정하여 분석하였다. 분석 결과 당 현장에서의 발파결과에 따른 요소별 가중치를 발파진동속도(20), 주 주파수 특성(20), 파쇄입도(40), 암석 이동(10) 및 버력의 상태(10)로 하여 분석한 결과 15ms가 최적시차로 나타냈다. 향후 각 현장에 적합한 요소별 가중치를 선정하여 현장별 최적시차를 도출한다면 최적의 발파효과를 있을 것으로 판단된다.

A Case Study on Construction of a Large-Scale Tunnel Blasting Using Electronic Detonator (전자뇌관을 이용한 대단면 터널 시공 사례)

  • Hwang, Nam-Sun;Lee, Dong-Hee;Jung, Min-Sung;Kim, Nam-Soo
    • Explosives and Blasting
    • /
    • v.36 no.2
    • /
    • pp.19-26
    • /
    • 2018
  • The measures for environmental regulations have become more strict over the recent years. Due to vibration and noise arising from blasting, every site that chooses to handle explosives has to be under certain restrictions in its use. Especially a site where a safety thing is situated within close proximity, the chosen method is through mechanical excavation. However, various applications of electronic detonators has made blasting possible where mechanical excavation used to be the only alternative. Hanwha Corporation has developed an electronic detonator, $HiTRONIC^{TM}$, which is an advanced fourth-generation detonator with a high accuracy of delay time(0.01%). At this moment, $HiTRONIC^{TM}$ is widely used in highway and railway construction sites, large limestone quarries, and many other blasting sites where blasting had not been an available option before. In this paper, I would like to introduce a case study on construction of utilizing $HiTRONIC^{TM}$ at a large-scale tunnel site.

Optimum Delay Time of Electronic Detonator using Blast-induced Vibration Waveform Composition (발파진동 파형합성을 이용한 전자뇌관의 최적지연초시에 관한 연구)

  • Yoon, Ji-sun;Kim, Do-hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.2
    • /
    • pp.129-139
    • /
    • 2006
  • When blasting by imposing the time difference between two adjacent charge holes, the mutual interference phenomenon occurs depending the feature of blast. This interference phenomenon of blast amplifies or compensates the blast-induced vibration depending on the overlapping mechanism. Thus, this experiment aims at finding out the optimum delay time by measuring the blast vibration data from the single hole blast during the blasting test and composing each blasting waveform, and at proving the its efficiency by applying the composition delay time in the entire cross section. The experiment showed that the blasting-induced vibration was reduced by endowing an optimum delay time of electronic detonator appropriate to the rock quality of construction site compared to the typical delay time (20, 25ms) of existing detonator (non-electric and electric detonator). From these results, the excavation efficiency using blasting could be enhanced..

  • PDF

Establishing a Standard Work Guideline for Safe Blasting (발파작업 표준 안전작업지침에 대한 개선안)

  • Kim, Hee-Do;Lee, Joon-Won
    • Explosives and Blasting
    • /
    • v.32 no.1
    • /
    • pp.23-30
    • /
    • 2014
  • The overall management for explosives in domestic and regulation for blasting is managed by the control Act of guns, sword, explosives etc. On the details for handling and method, delivery, storage, use and management for explosives and work safety for the accident prevention is recommended to the related business site through Standard safety work guideline of blasting which set by safety & health 27 Act handling. In this study, It reviews the standard safety work guideline of blasting notified by Ministry of employment & labor. We propose the new products introduced into domestic explosives market, definition of explosives word when the newest blasting technology is revised, emulsion explosives, bulk explosives and electronic detonators which increased in the latest. Indeed, We propose a typical handling method of non-electric detonator and electronic in order to make the renewed Standard safety work guideline of Blasting on work guideline.

A Case Study on the Application of HiTRONIC-II Electronic Detonators to Overseas Site (HiTRONIC-II 전자뇌관 해외현장 적용 기술사례)

  • Lee, Dong-Hee;Jeong, Min-Su;Hwang, Nam-sun;Kim, Tae-hyun
    • Explosives and Blasting
    • /
    • v.37 no.3
    • /
    • pp.34-42
    • /
    • 2019
  • An electronic initiation system that can support various types of field blasting works has been developed and put into practice. The newly developed equipment called Hanwha Electronic Blasting System (HEBS) II has three basic operation modes of scanning, logging, and tagging, among which the blaster can choose the most suitable one for the specific site conditions. In the present study, the work efficiency of the system in the scanning, logging and tagging modes was compared with that of the previous non-electric detonator. The results were estimated based on the aspects of the ground vibration, fragmentation, and digging time. It was found that the ground vibration, fragmentation, and digging time of the new system were decreased by about 45%, 31%, and 13%, respectively, with respect to the previous system. This result confirms that the new system is very efficient in the scanning, logging and tagging modes under the field conditions.

The Changes of Cerebral Metabolic Parameters, Serum Levels of Neuron-Specific Enolase and S-100$\beta$ Protein During Retrograde Cerebral Perfusion Under Profound Hypothermic Total Circulatory Arrest (초저체온하 완전순환정지 시에 이용되는 역행성 뇌관류의 시간에 따른 뇌대사 지표, 혈청 내 neuron-specific enolase, 및 S-100 베타단백의 변화)

  • 김경환
    • Journal of Chest Surgery
    • /
    • v.34 no.9
    • /
    • pp.653-661
    • /
    • 2001
  • Background: Retrograde cerebral perfusion(RCP) is one of the methods used for brain protection during aortic arch surgery. The author previously published the data, however, for the safety of it, there still remains many controversies. The author performed RCP and checked various parameters to clarify the possibility of early detection of cerebral injury. Material and Method: The author used pigs(Landrace species) weighing 25 to 30kg and performed RCP for 120 minutes. After weaning of cardiopulmonary bypass, we observed pigs for another 120 minutes. Rectal temperature, jugular venous oxygen saturation, central venous pressure were continuously monitored, and the hemodynamic values, histological changes, and serum levels of neuron-specific enolose(NSE) and S100$\beta$ protein were checked. Central venous pressure during RCP was maintained in the range of 20 to 25 mmHg. Result: Flow rates(ml/min) during RCP were 224.3$\pm$87.5(20min), 227.1$\pm$111.0(40min), 221.4$\pm$119.5(60min), 230.0$\pm$136.5(80min), 234.3$\pm$146.1(100min), and 184.3$\pm$50.5(120min). Serum levels of NSE did not increase after retrograde cerebral perfusion. Serum levels of S100$\beta$ protein(ng/ml) were 0.12$\pm$0.07(induction of anesthesia), 0.12$\pm$0.07(soon after CPB), 0.19$\pm$0.12(20min after CPB), 0.25$\pm$0.06(RCP 20min), 0.29$\pm$0.08(RCP 40min), 0.41$\pm$0.05(60min), 0.49$\pm$0.03(RCP 80min), 0.51$\pm$0.10(RCP 100min), 0.46$\pm$0.11(RCP 120min), 0.52$\pm$0.15(CPBoff 60min), 0.62$\pm$0.15(60min after rewarming), 0.76$\pm$0.17(CPBoff 30min), 0.81$\pm$0.20(CPBoff 60min), 0.84$\pm$0.23(CPBoff 90min) and 0.94$\pm$0.33(CPBoff 120min). The levels of S100$\beta$ after RCP were significantly higher than thosebefore RCP(p<0.05). The author could observe the mitochondrial swellings using transmission electron microscopy in neocortex, basal ganglia and hippocampus(CA1 region). Conclusion: The author observed the increase of serum S100$\beta$ after 120 minutes of RCP. The correlation between its level and brain injury is still unclear. The results should be reevaluated with longterm survival model also considering the confounding factors like cardiopulmonary bypass.

  • PDF

Clinical Result of Aortic Arch Replacement using Antegrade Brain Perfusion Via Right Axillary Artery (우액와동맥을 통한 순행성 뇌관류법을 이용한 대동맥궁 치환의 임상성적)

  • Kim, Dong-Jin;Na, Yong-Jun;Jeong, Dong-Seop;Kim, Kyung-Hwan
    • Journal of Chest Surgery
    • /
    • v.40 no.1 s.270
    • /
    • pp.25-31
    • /
    • 2007
  • Background: Cerebral protection is one of the most important procedures during aortic arch surgery. We can minimize neurological complications through short period of total circulatory arrest and resuming of brain perfusion. We evaluated 11 patients who underwent arch replacement using antegrade brain perfusion via right axillary artery. Material and Method: Between July 2004 and July 2006, 11 patients (male 9, female 2) underwent aortic arch replacement with antegrade brain perfusion via right axillary artery. Preoperative diagnosis was listed; 5 type A aortic dissections (5/11, 45.5%), 5 aortic aneurysms (5/11, 45,5%) and 1 type A IMH (intramural hematoma, 1/11, 9%). The mean age at the time of operation was $60.3{\pm}12.8$ years. For antegrade brain perfusion, we performed right axillary artery cannulation in all patients. Retrograde brain perfusion was used briefly during total circulatory arrest. Result: The mean total circulatory arrest time was $31.1{\pm}16.9$ minutes and the mean retrograde brain perfusion time was $21{\pm}17.8$ minutes. Mean antegrade brain perfusion time was $77.9{\pm}17.5\;(43{\sim}101)$ minutes. We had neither operative mortality nor permanent neurological complications. Conclusion: By means of antegrade brain perfusion via right axillary artery, that could lead to decrease circulatory arrest time and minimize damages to severely atheromatous arch vessels, we can expect to reduce neurological complications after aortic arch replacement. Further investigation with iarge patient populations will be required.