• Title/Summary/Keyword: 노출콘크리트

Search Result 512, Processing Time 0.027 seconds

Flexural Behaviors of GFRP Rebars Reinforced Concrete Beam under Accelerated Aging Environments (GFRP Rebar 보강 콘크리트 보의 급속노화환경에서의 휨 거동에 관한 연구)

  • Park, Yeon-Ho;Choi, Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.137-144
    • /
    • 2013
  • The use of fiber-reinforced polymer (FRP) reinforcing bars in concrete structures has been increased as an alternative of steel reinforcement which has shown greater vulnerability to corrosion problem. However, the long-term performance of concrete members with FRP reinforcement is still questioned in comparison to the used of steel reinforcement. This study presents the results of an experimental study on the long-term behaviors of GFRP (glass fiber reinforced polymer) bar reinforced concrete beams after exposed to accelerated aging in an environmental chamber with temperature of $46^{\circ}C$ ($115^{\circ}F$) and 80% of relative humidity up to 300 days. The objectives of this research was to compare strength degradation and change of ductility between GFRP reinforced concrete beams and steel reinforcement beams after accelerated aging. Two types (wrapped and sand-coated surface) of GFRP bars and steel were reinforced. in concrete beams. Test results show that the failure modes of GFRP bar reinforced concrete beams are very similar with traditional RC beams, and the change of load-carrying capacity of steel reinforcing concrete beam is greater than that of GFRP bar reinforcing concrete beam under the accelerated aging. Test result also shows that the use of GFRP reinforcing in concrete could be introduced more brittle failure than that of steel reinforcing for practical application. The deformability factor up to compression failures indicates no significant variation before and after exposure of accelerated aging.

Tensile strength evaluation of SFRC subjected to high temperature using double punch test (DPT 실험을 이용한 고온노출된 강섬유보강콘크리트의 인장강도 평가)

  • Moon, Do-Young;Chang, Soo-Ho;Bae, Gyu-Jin;Lee, Gyu-Pil;Kim, Hee-Sung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 2013
  • Steel fiber-reinforced concrete (SFRC) is widely used for tunnel lining structure such as shot-crete in NATM tunnel and segment in TBM tunnel. In tunnel fire accidents, structural performance of a lining is very important because the lining is the structure that directly exposed to fire. In this study, the effects of high temperatures, mix ratios and types on failure pattern, DPT tensile strength and coefficient of variation were investigated through Double Punch Tests (DPT) of SFRC subjected to high temperatures. In the results, it is confirmed that the residual DPT tensile strength increases as for SFRC and this is more in SFRC with higher mix ratio. But, the equation for evaluation of DPT tensile strength does not involve the number of failure surfaces SFRC specimens subjected to high temperatures, therefore, it is required to investigate more fracture energy in DPT tests.

Investigation of Material Characteristics of Reinforced Concrete Beam After Exposure to Fire Test (화재 실험에 따른 철근 콘크리트 보의 재료특성 연구)

  • Ju, Min-Kwan;Park, Cheol-Woo;Oh, Ji-Hyun;Seo, Sang-Gil;Shim, Jae-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.33-41
    • /
    • 2016
  • Concrete is inherently a good fire-resistance material among all other constrcution materials and protects the reinforcing steel inside. This study investigates the material characteristics of concrete and steel bar inside the full scale reinforced concrete(RC) beam exposed to fire test. The fire test specimen was 4 m long and the test was conducted under no loading condition following KS F 2257. Fire source is simulated by ISO 834 and number of thermocouples were installed to measure temperature variation of surfaces and inside of the beam. The measured compressive strength of cored specimen, which was exposed to fire test, was 11 MPa, about 66% lower than the strength before exposure. The yielding strength of steel bar also decreased about 75 MPa, about 17% lower. The measured temperature of protected steel bar was around $649^{\circ}C$, the critical limit, after 4 hour exposure.

Properties of Physical and Surface Glossing of Exposed Concrete with the Contents of Granulated Blast Furnace Slag (고로슬래그 미분말의 치환율 변화에 따른 노출 콘크리트의 물리 및 표면광택 특성)

  • 한천구;전충근
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.92-99
    • /
    • 2002
  • This paper is Intended to investigate physical properties and surface glossing of exposed concrete incorporating granulated blast furnace slag(BS). According to test results there is no remarkable variations in fluidity and air content with increase of BS, but unit weight shows decline tendency Compressive strength at later age gains considerably due to potential hydraulicity reaction of BS. It shows that drying shrinkage increases. It is found that low W/B, surface coating and high BS content lead to favorable effects on the surface glossing of exposed concrete because of filling effects on the voids of the concrete. It is improved by about 7 % with increase every 10 % of BS content. The effects of form pannel kinds on the improvement of surface glossing are in order for acryl, fancy, steel and wood.

Design of Fire-Resistance in RC Structure Buildings (콘크리트 구조물의 내화설계)

  • 김화중
    • Magazine of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.30-36
    • /
    • 2002
  • 콘크리트가 화재에 노출될 경우 가열에 의한 재질의 노화 및 열팽창에 의한 열응력의 발생에 따라 주요구조부인 기둥 및 보에 큰 손상이 생기게 되어 그 내력은 크게 저하하게 된다. 철근 콘크리트 구조물의 화재 상황을 조사해 보면 (그림 1)과 같이 열응력에 의한 기둥의 전단파괴, 보의 휨파괴 및 부재의 폭열 등이 보여진다.(중략)

Study on the Exposed Concrete Construction Formwork According to Attachment Materials (거푸집 붙임재료에 따른 노출콘크리트 시공에 관한 연구)

  • Park, Se-Jun;Lee, Yun-Suk;Lee, Young-Do
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.223-224
    • /
    • 2016
  • Recent local advantages to improve the aesthetics of building materials connected with one of the trend of Exposed Concrete and Construction Method in various facilities and to diversify Showing a tendency to both application and development. This exposed concrete form of the features and materials is, the impact of large commercial viability and can consider I can apply to the surface of construction on a surface The diversification of the material was soon exposed directly linked to the varying aesthetics of concrete, and currently take advantage of the form of material is based on such important factor in our country Based on the concept of Exposed Concrete utilized by some construction site, design and be considered is very important elements of the put to practical use.

  • PDF

Properties of Fire Resistance in Tunnel Concrete According to the Changes of Heating Curve (온도가열곡선 변화에 따른 콘크리트의 내화특성)

  • Pei, Chang-Chun;Noh, Sang-Kyun;Lee, Chan-Young;Lee, Jong-Suk;Lee, Jang-Hwa;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.705-708
    • /
    • 2008
  • To obtain tunnel concrete safety in case of fire, this study analyzed fire proof characteristics by fire proof method change, and the results are as follows. As a fire proof characteristics by RABT temperature heating curve, plain concrete experienced severe spalling by initial extremely high temperature. In view of fire proof method, in the cases of organic fiber mixing method and board method, spalling was prevented, and in the case of spray method, severe spalling of over 100mm depth occurred along with exposure of structural concrete including spray coat by heat stress, etc while metal lath, the stiffener, falls off. As for fire proof characteristics by RWS temperature heating curve, in case of organic fiber inclusion, concrete surface experienced fusion of within 5mm, while in the case of spray method, spray coat was severely spalled to a depth of over 100mm causing structural body concrete to expose its reinforcement, and also in the case of board method, board was fused by high temperature, causing structural body concrete be directly exposed to high temperature, which triggered overall fall-off phenomenon, so in such extraordinary high temperature heating condition, establishment of special fire proof measures is needed.

  • PDF

Hysteretic Behavior of RC Beams Exposed to Freezing and Thawing under Cyclic Loadings (철근콘크리트보의 동결융해 경험에 따른 반복하중하에서의 이력특성)

  • Jang, Gwang-Soo;Kim, Yun-Su;Seo, Soo_Yeon;Choi, Ki-Bong;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.25-28
    • /
    • 2008
  • Generally, reinforced concrete structures exposed to the outside temperature are affected by freezing and thawing process during winter and early spring. These freezing and thawing process can lead to the reduction in durability of concrete as cracking or surface spalling. This paper is to study the hysteretic behavior of RC beams exposed to freezing and thawing under cyclic loadings. To compare the difference in hysteretic behavior of RC Beams, limited tests were conducted under different types of damage and freezing and thawing cycles. For this purpose, six specimens were tested. It is thought that experimental results will be used as basic data to evaluate hysteretic behavior of RC beams exposed to freezing and thawing.

  • PDF

Bridge Deck Overlay Technology Using High Performance Concrete (고성능 콘크리트를 활용한 교량 교면포장 기술)

  • Park, Hae-Geun;Won, Jong-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1113-1116
    • /
    • 2008
  • The application of High Performance Concrete (HPC) for protecting bridge deck concrete with micro-silica, fly-ash and ground granulated blast-furnace slag was introduced to North America in the early 1980's. This report introduces the literature reviews of high performance concrete for protecting concrete bridge deck and explains 2-different types of construction methods using this materials. One is high performance concrete overlay method and the other is full depth bridge deck method. Both methods have been successfully applied and demonstrated in north america. Especially, modified high performance concrete overlay method including silica-fume and PVA fiber has been successfully applied in korea also. Therefore, both methods that high performance concrete overlay and full depth bridge deck are considered as reasonable bridge deck protecting methods compared with the conventional bridge deck system using asphalt modified materials.

  • PDF