• Title/Summary/Keyword: 노이즈 검출

Search Result 327, Processing Time 0.02 seconds

Noise Removal Algorithm for Accurate Mean Arterial Pressure Measurement in Pressurized Oscillometric Method (가압식 오실로메트릭 측정법에서 정확한 평균 동맥압 측정을 위한 노이즈 제거 알고리즘)

  • Joh, In-hee;Lim, Jung-hyun;Kim, Young-kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.184-187
    • /
    • 2018
  • The most important factor in the prevention and treatment of cerebral infarction is to increase cerebral blood flow. Methods for increasing cerebral blood flow include drug-based methods, the surgery, invasive procedures directly inserting medical devices into the artery(NeuroFloTM) and so on. The noninvasive cerebral blood flow increasing device proposed in this paper can reduce the burden on the patient because the probability of complication is low and the treatment level can be determined according to the blood pressure state of the patient. In implementing such a noninvasive cerebral blood flow increasing device, it is important to measure the accurate mean arterial pressure for provision the appropriate level of treatment for the patient. Therefore, to remove a noise, analog and digital filters were used and algorithm for peak value detection, pump control algorithms and so on were.

  • PDF

An Improved AdaBoost Algorithm by Clustering Samples (샘플 군집화를 이용한 개선된 아다부스트 알고리즘)

  • Baek, Yeul-Min;Kim, Joong-Geun;Kim, Whoi-Yul
    • Journal of Broadcast Engineering
    • /
    • v.18 no.4
    • /
    • pp.643-646
    • /
    • 2013
  • We present an improved AdaBoost algorithm to avoid overfitting phenomenon. AdaBoost is widely known as one of the best solutions for object detection. However, AdaBoost tends to be overfitting when a training dataset has noisy samples. To avoid the overfitting phenomenon of AdaBoost, the proposed method divides positive samples into K clusters using k-means algorithm, and then uses only one cluster to minimize the training error at each iteration of weak learning. Through this, excessive partitions of samples are prevented. Also, noisy samples are excluded for the training of weak learners so that the overfitting phenomenon is effectively reduced. In our experiment, the proposed method shows better classification and generalization ability than conventional boosting algorithms with various real world datasets.

Fault Diagnosis of Induction Motor by Fusion Algorithm based on PCA and IDA (PCA와 LDA에 기반을 둔 융합알고리즘에 의한 유도전동기의 고장진단)

  • Jeon, Byeong-Seok;Lee, Dae-Jong;Lee, Sang-Hyuk;Ryu, Jeong-Woong;Chun, Myung-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.2
    • /
    • pp.152-159
    • /
    • 2005
  • In this paper, we propose a diagnosis algorithm using fusion wかd based on PCA and LDA to detect fault states of the induction motor that is applied to various industrial fields. After yielding a feature vector from the current value measured by an experiment using PCA and LDA, training data is made to produce each matching value. In a diagnostic step, two matching values yielded by PCA and LDA are fused by probability model and finally verified. Since the proposed diagnosis algorithm takes only merits of PCA and LDA it shows excellent results under noisy environments. The simulation results to verify the usability of the proposed algorithm showed better performance than the case just using conventional PCA or LDA.

Thermal Infrared Image Enhancement Method Based on Retinex (Retinex 처리에 기반한 적외선 열상 이미지의 화질 개선)

  • Lee, Won-Seok;Kim, Kyoung-Hee;Lee, Sang-Won
    • 전자공학회논문지 IE
    • /
    • v.48 no.2
    • /
    • pp.32-39
    • /
    • 2011
  • The output image of the uncooled thermal infrared camera is difficult the identification of target because of the limited dynamic range and the various noises. Retinex algorithm based on the theory of the human visual perception is known to be effective contrast enhancement technique. However, the image quality is insufficient when it is adopted to the narrow dynamic range image as the infrared image. In this paper, we propose the revised retinex algorithm to enhance the contrast of the infrared image. To improve the contrast enhancement performance, we designed the new dynamic range compression function instead of log function. To reduce the noise and compensate the loss of edge, we added the contrast compensation procedure in the MSR image generation process. According to the output picture comparing and numerical analysis, the proposed algorithm shows the better contrast enhancement performance and the more suitable method for the infrared image enhancement.

Stabilization of High-Voltage Static Var Compensator Using Switching Velocity and Temperature Control (스위칭 속도 및 온도 제어를 사용한 고압용 정지형 무효전력 보상장치의 안정화)

  • Kim, Yong-Tae;Lee, Chang-Seok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.2
    • /
    • pp.107-112
    • /
    • 2013
  • In the paper, velocity controller of switching module and temperature controller for the high-voltage static var compensator are proposed. Because of the continuous increase in demand for electric power, transmission and distribution facilities of power plant are required. There is a bottleneck problem of transportation routes according to new construction and expansion of power transmission facilities. Therefore there are researches to maximize the utilization of existing facilities and to increase transmission capacity without new construction. The previous static var compensator detects voltage of input circuit of power, switches the SCR directly and generates switching noise. The proposed method increases switching velocity and decreases noise using switching control based on the voltage between both sides of SCR. Also the proposed method enhance the stability using realtime temperature control for heating of the system from increase of switching velocity. We experiment the velocity and temperature control of the proposed high-voltage static var compensator in the real environment and verify the performance of the proposed system by applying in the real field.

Development of EEG Signals Measurement and Analysis Method based on Timbre (음색 기반 뇌파측정 및 분석기법 개발)

  • Park, Seung-Min;Lee, Young-Hwan;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.388-393
    • /
    • 2010
  • Cultural Content Technology(CT, Culture Technology) for the development of cultural industry and the commercialization of technology, cultural contents, media, mount, pass the value chain process and increase the added value of cultural products that are good for all forms of intangible technology. In the field of Culture Technology, Music by analyzing the characteristics of the development of a variety of applications has been studied. Associated with EEG measures and the results of their research in response to musical stimuli are used to detect and study is getting attention. In this paper, the musical stimuli in EEG signals by amplifying the corresponding reaction to the averaging method, ERP (Event-Related Potentials) experiments based on the process of extracting sound methods for removing noise from the ICA algorithm to extract the tone and noise removal according to the results are applied to analyze the characteristics of EEG.

Separation Inverter Noise and Detection of DC Series Arc in PV System Based on Discrete Wavelet Transform and High Frequency Noise Component Analysis (DWT 및 고주파 노이즈 성분 분석을 이용한 PV 시스템 인버터 노이즈 구분 및 직렬 아크 검출)

  • Ahn, Jae-Beom;Jo, Hyun-Bin;Lee, Jin-Han;Cho, Chan-Gi;Lee, Ki-Duk;Lee, Jin;Lim, Seung-Beom;Ryo, Hong-Je
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.4
    • /
    • pp.271-276
    • /
    • 2021
  • Arc fault detector based on multilevel DWT with analysis of high-frequency noise components over 100 kHz is proposed in this study to improve the performance in detecting serial arcs and distinguishing them from inverter noise in PV systems. PV inverters generally operate at a frequency range of 20-50 kHz for switching operation and maximum power tracking control, and the effect of these frequency components on the signal for arc detection leads to negative arc detection. High-speed ADC and multilevel DWT are used in this study to analyze frequency components above 100 kHz. Such high frequency components are less influenced by inverter noise and utilized to detect as well as separate DC series arc from inverter noise. Arc detectors identify the input current of PV inverters using a Rogowski coil. The sensed signal is filtered, amplified, and used in 800kSPS ADC and DWT analysis and arc occurrence determination in DSP. An arc detection simulation facility in UL1699B was constructed and AFD tests the proposed detector were conducted to verify the performance of arc detection and performance of distinction of the negative arc. The satisfactory performance of the arc detector meets the standard of arc detection and extinguishing time of UL1699B with an arc detection time of approximately 0.11 seconds.

Rear Vehicle Detection Method in Harsh Environment Using Improved Image Information (개선된 영상 정보를 이용한 가혹한 환경에서의 후방 차량 감지 방법)

  • Jeong, Jin-Seong;Kim, Hyun-Tae;Jang, Young-Min;Cho, Sang-Bok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.1
    • /
    • pp.96-110
    • /
    • 2017
  • Most of vehicle detection studies using the existing general lens or wide-angle lens have a blind spot in the rear detection situation, the image is vulnerable to noise and a variety of external environments. In this paper, we propose a method that is detection in harsh external environment with noise, blind spots, etc. First, using a fish-eye lens will help minimize blind spots compared to the wide-angle lens. When angle of the lens is growing because nonlinear radial distortion also increase, calibration was used after initializing and optimizing the distortion constant in order to ensure accuracy. In addition, the original image was analyzed along with calibration to remove fog and calibrate brightness and thereby enable detection even when visibility is obstructed due to light and dark adaptations from foggy situations or sudden changes in illumination. Fog removal generally takes a considerably significant amount of time to calculate. Thus in order to reduce the calculation time, remove the fog used the major fog removal algorithm Dark Channel Prior. While Gamma Correction was used to calibrate brightness, a brightness and contrast evaluation was conducted on the image in order to determine the Gamma Value needed for correction. The evaluation used only a part instead of the entirety of the image in order to reduce the time allotted to calculation. When the brightness and contrast values were calculated, those values were used to decided Gamma value and to correct the entire image. The brightness correction and fog removal were processed in parallel, and the images were registered as a single image to minimize the calculation time needed for all the processes. Then the feature extraction method HOG was used to detect the vehicle in the corrected image. As a result, it took 0.064 seconds per frame to detect the vehicle using image correction as proposed herein, which showed a 7.5% improvement in detection rate compared to the existing vehicle detection method.

Development of Liquid Crystal Optic Modulation Based X-ray Dosimeter by Using CdS Sensor (CdS 센서를 이용한 액정 광변조 X-선 검출 시스템 개발)

  • Noh, Si-Cheol;Kang, Sang-Sik;Jung, Bong-Jae;Choi, Il-Hong;Kim, Hyun-Hee;Cho, Chang-Hoon;Park, Jun-Hong;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.6
    • /
    • pp.357-361
    • /
    • 2011
  • In this study, the liquid-crystal optical modulation X-ray detection system using a CdS which is a family of II-IV compound semiconductor was proposed. The system consist of the detector, the signal processing part, the liquid-crystal driving parts, microcontroller, and I/O parts, and was designed to be suitable for miniaturization and portable. In addition, the system can measure a wide range X-ray by using the detecting range selection. In order to evaluate the performance of the proposed system, the CdS sensor's output characteristics were confirmed in accordance with changes of dose, and excellent correlation was determined. And also, the optical penetration ratio was discussed in accordance with changes of the applied voltage by measuring the change of the liquid-crystal in accordance with changes of the applied voltage. Through these results, the characteristics of the liquid-crystal optical modulation system such as the excellent reproducibility and the noise immunity were confirmed. And we considered that the CdS cell-based liquid-crystal optical modulated portable X-ray detection system could be applied to compact, low-cost, portable system.

A Road Feature Extraction and Obstacle Localization Based on Stereo Vision (스테레오 비전 기반의 도로 특징 정보 추출 및 장애 물체 검출)

  • Lee, Chung-Hee;Lim, Young-Chul;Kwon, Soon;Lee, Jong-Hun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.6
    • /
    • pp.28-37
    • /
    • 2009
  • In this paper, we propose an obstacle localization method using a road feature based on a V-disparity map binarized by a maximum frequency value. In a conventional method, the detection performance is severely affected by the size, number and type of obstacles. It's especially difficult to extract a large obstacle or a continuous obstacle like a median strip. So we use a road feature as a new decision standard to localize obstacles irrespective of external environments. A road feature is proper to be a new decision standard because it keeps its rough feature very well in V-disparity under environments where many obstacles exist. And first of all, we create a binary V-disparity map using a maximum frequency value to extract a road feature easily. And then we compare the binary V-disparity map with a median value to remove noises. Finally, we use a linear interpolation for rows which have no value. Comparing this road feature with each column value in disparity map, we can localize obstacles robustly. We also propose a post-processing technique to remove noises made in obstacle localization stage. The results in real road tests show that the proposed algorithm has a better performance than a conventional method.