• Title/Summary/Keyword: 노면 마찰

Search Result 59, Processing Time 0.032 seconds

A Comparision of Traffic Accident Possibilities for Different Pavement Materials in Wet Condition (포장재료별 습윤시 교통사고 가능성 비교 연구)

  • 장덕명;서영찬;여운웅;이대달
    • Journal of Korean Society of Transportation
    • /
    • v.15 no.2
    • /
    • pp.25-34
    • /
    • 1997
  • 본 연구에서는 아스팔트 포장과 콘크리트 포장의 습윤시 교통사고 가능성을 비교하 였다. 다양한 노후도를 가진 두 포장재료에 대해 마찰력 측정장비(BPT, Britsh Pendulum Tester)로 건조 및 습윤상태에서 노면마찰력을 측정하였으며, 측정결과와 두 포장재료에 대 한 실제 교통사고율을 비교하였다. 본 연구의 결과를 요약하면 다음과 같다. (1) 노면 습윤 에 따른 마찰력 저하정도는 아스팔트 포장이 콘크리트 포장보다 컸다. (2) 노면 습윤에 따른 실제 교통사고율도 아스팔트 포장에서 훨씬 큰 것으로 나타나 (1)의 결론과 일관된 결과를 보여주었다. (3) 노면마찰력은 건조상태에서는 노면마모 정도에 크게 영향을 받지 않으나 일 단 습윤상태가 되면 노면마모가 심할수록 마찰력 저하폭이 큰 것으로 나타났다.

  • PDF

Analysis of Car Following Model of Adaptive Cruise Controlled Vehicle Considering the Road Conditions According to Weather Circumstance (기상상황에 따른 노면상태를 고려한 첨단차량 추종거동 모형의 분석)

  • Kim, Tae-Uk;Bae, Sang-Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.3
    • /
    • pp.53-64
    • /
    • 2013
  • The car-following model is one of core models in Advanced Vehicle & Highway Systems (AVHS). The car-following model has been developed in aspects such as human factor and reduction error rates. However, the consideration of safety depending on weather condition has not been completed yet. In this paper, therefore, changes of driving condition for car-following due to different road condition were dealt with, and optimal safety distance corresponding to road condition such as dry, wet and snowy were computed. The GMIT(GM Model with Instantaneous T) model was picked over for simulation of adaptive cruise control applied the suggested optimal safety distance. As the results, the 1.7 times longer safety distance was required for wet road condition than dry road condition, and the 5.6 times longer safety distance was required for snowy road condition.

A Preliminary Study on Developing a Trafficability Index of Vehicles in Wintertime (동절기 차량의 등판가능성 지표 구축 방안)

  • Chung, Younshik;Shin, Kangwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1611-1617
    • /
    • 2013
  • Information about trafficability or the condition of road with regard to its being traveled over by vehicles is one of the most critical factors for roadway operation in winter. Specifically, when traveling on snowy or icy surfaces, the traction force varies per vehicle type including tire types, geometric characteristics of roads, and conditions of road surfaces. In general, front-wheel drive or four-wheel drive vehicles have better traction performance on snowy or icy surface than rear-wheel drive vehicles, and the latter type vehicle causes more serious traffic congestion when there is unexpected snowfall. Thus, traffic information regarding trafficability with respect to vehicle types, geometric characteristics of roadway sections, and roadway surface conditions can provide a foundation to make a decision whether to use the associated roadway sections for roadway operators as well as users. Based on the preceding premise, the objective of this study is to present a methodology for developing a trafficability index with respect to vehicle types, geometric characteristics of roadway sections, and roadway surface conditions.

Estimation of Drag Factors Between Roadway Surface and Human Body (인체와 노면간의 마찰계수 추정에 관한 연구)

  • Kim, Min-Tae;Lee, Sang-Soo;Lee, Chul-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.6
    • /
    • pp.54-62
    • /
    • 2010
  • The scientific analysis of car-pedestrian accidents is not an easy task because of the characteristic of the accidents itself. Since the analysis involved human being, there were few experimental data that could be used for the analysis. The coefficient of friction of human body was the one of crucial data for accident analysis, but no field experiment report was available for various roadway conditions. This study intends to measure the coefficient of friction of human body through field studies. Results showed that the coefficient of friction of human body for dry asphalt pavement conditions was 0.59~0.62, and for dry concrete pavement conditions was 0.59~0.61. In addition, the coefficients for wet asphalt pavement and for wet concrete pavement conditions were 0.56~0.59 and 0.51~0.54 respectively, indicating 5.0% and 8.3% reduction compared to the dry conditions. The deduced coefficients were validated using the simulation program. It has been confirmed that the experiment values were close to the simulation results.

Sliding Friction of Elastomer Composites in Contact with Rough Self-affine Surfaces: Theory and Application (자기-아핀 표면 특성을 고려한 유기탄성체 복합재료 마찰 이론 및 타이어 트레드/노면 마찰 응용)

  • Bumyong Yoon;Yoon Jin Chang;Baekhwan Kim;Jonghwan Suhr
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.141-153
    • /
    • 2023
  • This review paper presents an introduction of contact mechanics and rubber friction theory for sliding friction of elastomer composites in contact with rough surfaces. Particularly, Klüppel & Heinrich theory considers the self-affine (or fractal) characteristic for rough surfaces to predict adhesion and hysteresis frictions of elastomers based on the contact mechanics of Greenwood & Williamson. Due to dynamic excitation process of elastomer composites while sliding in contact with multiscale surface roughness (or asperity), viscoelastic properties in a wide frequency range becomes major contributor to friction behaviors. A brief description and examples are provided to construct a viscoelastic master curve considering nonlinear viscoelasticity of elastomer composites. Finally, application of rubber friction theory to tire tread compounds in traction with road surfaces is discussed with several experimental and theoretical results.

Relationships Between Pre-Skidding and Pre-Braking Speed (활주 직전과 제동 직전 속도의 상관관계 규명에 관한 연구)

  • Ryu, Tae-Seon;Jeon, Jin-U;Park, Hong-Han;Lee, Su-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.1
    • /
    • pp.43-51
    • /
    • 2009
  • This paper investigates the accuracy of vehicle pre-braking speed estimates based upon tire/roadway coefficient of friction (drag factor) measurements and skid mark measurements Data for pre-braking and pre-skidding speeds were collected to determine if there were any correlations between pre-braking speeds and pre-skidding speeds. Braking tests were performed on two vehicles using various measurement devices including a fifth wheel, a speed gun, and a vericom 2000. The vehicle speeds, braking distances, skid mark distances, and deceleration histories were recorded. From these data. coefficients of friction and vehicle pre-skidding speeds for the tested road surface were calculated. The pre-skidding speeds were then compared to the actual pre-braking speeds of the vehicles in order to establish relationships between pre-skidding and pre-braking speed. A correlation between the Pre-skidding speed and the actual pre-braking speed was established for the study data.

An Experimental Evaluation of Friction Noise between Road Surface and Tyre (포장노면 종류에 따른 타이어/노면 마찰 소음의 실험적 평가)

  • Kim, J.H.;Choi, T.M.;Moon, S.H.;Seo, Y.G.;Park, J.S.;Do, C.S.;Cho, D.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.10 s.115
    • /
    • pp.1067-1073
    • /
    • 2006
  • In this paper, we present noise measurement results of 8 vehicles. The measurement was done by a close proximity method attaching surface microphones on the test vehicle. For the 9 road surface types constructed at Korean highway test road, the vehicles were tested from 50 to 120 km/h at the interval of 10 km/h in normal steady state and inertia cruising conditions. Using the results, we evaluate and discuss the effect of vehicle noise generation depending on the different conditions for vehicle type, speed, road surface and loading condition, especially focused on friction noise between tyre and road surface.

An Experimental Evaluation of Friction Noise between Road Surface and Tyre (포장노면 종류에 따른 타이어/노면 마찰 소음의 실험적 평가)

  • Kim, J.H.;Cho, D.S.;Choi, T.M.;Mun, S.H.;Seo, Y.G.;Park, J.S.;Do, C.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.428-433
    • /
    • 2006
  • In this paper, we present noise measurement results of 8 vehicles. The measurement was done by a close proximity method attaching surface microphones on the test vehicle. For the 9 road surface types constructed at Korean highway test road, the vehicles were tested from 50 to 120 km/h at the interval of 10 km/h in normal steady state and inertia cruising conditions. Using the results, we evaluate and discuss the effect of vehicle noise generation depending on the different conditions for vehicle type, speed, road surface and loading condition, especially focused on friction noise between tyre and road surface.

  • PDF

A Study on Turning Characteristics of Vehicle Based on Parameters of Curved Road (매개변수에 따른 커브 길에서 차량 선회특성에 관한 연구)

  • Yang, Sung-Hoon;Lee, Hak-Yong;Yoon, Jun-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.25-32
    • /
    • 2013
  • Entry speed of the vehicle and lateral acceleration acting on the vehicle, roll-angle associated with the overthrow, and then the structure of the road, the friction of road surface are important factors in turning on the curved road. In this study, we analyzed the state change of the vehicle causing entry speed of the vehicle and superelevation of the road, the friction coefficient by using a PC-crash Program for traffic accident reconstruction. As a result, when vehicle is turning the curved road, we could ascertain that the structure of the road and state of the road surface are a major factor about the set up of limited speed.