• Title/Summary/Keyword: 노드 비교

Search Result 1,563, Processing Time 0.025 seconds

A Parallel Implementation of Purge Process for Lustre File System (Lustre 파일 시스템을 위한 Purge 기능의 병렬화 구현)

  • Kwon, Min-Woo;Yoon, Jun-Weon;Hong, Tae-Young;Park, Chan-Yeol
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.64-65
    • /
    • 2016
  • 슈퍼컴퓨터는 대용량의 데이터를 효율적으로 관리하기 위해 Lustre 파일 시스템과 같은 고성능의 병렬 파일 시스템을 이용한다. 한국과학기술정보연구원의 슈퍼컴퓨터 4호기 Tachyon 2차 시스템과 같이 다수의 사용자가 접속하는 슈퍼컴퓨터는 사용자의 데이터가 한없이 누적됨으로 Lustre 파일 시스템의 성능이 저하되는 이슈가 있다. 본 논문에서는 사용자의 데이터가 누적되는 것을 방지하기 위해 장기간 사용하지 않는 데이터를 자동 삭제하는 기능인 Purge기능을 구현하였다. 특히, 기하급수적으로 늘어나는 병렬 파일 시스템의 용량에 대처하기 위해 병렬 컴퓨팅 기술을 이용해 고속 Purge 기능을 구현하였다. 단일 컴퓨팅 노드와 병렬 환경에서 구현한 결과를 비교하였을 때, 단일 컴퓨팅 노드에서는 1,517GB 용량을 지우는데 221.2초가 걸렸으며 16개의 컴퓨팅 노드를 이용한 병렬 환경에서는 49.9초가 걸렸다. 이 결과를 비교했을 때 단일 컴퓨팅 노드에서 구현한 결과 대비 병렬 환경에서 구현했을 때 약 4.4배의 성능향상을 얻을 수 있었다.

Implementation and Performance Evaluation of Stream Ciphers for Secure Sensor Network (안전한 센서 네트워크를 위한 스트림 암호의 비교와 구현)

  • Na, Hyoung-Jun;Lee, Mun-Kyu;Park, Kun-Soo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06b
    • /
    • pp.470-475
    • /
    • 2007
  • 최근 센서 네트워크에 대한 연구가 활발한 가운데 센서 네트워크에서의 보안에 관한 중요성 또한 대두되고 있어, 센서 노드 및 센서 네트워크 상의 정보를 안전하게 관리하기 위한 암호 알고리즘의 구현이 필수적이다. 센서 노드 상에서 이용될 수 있는 암호로는 TinyECC 등의 공개키 암호와 AES와 같은 표준 블록 암호가 있으나, 속도 면에서 좀더 효율적일 것으로 기대되는 스트림 암호는 아직 표준화된 바가 없으며, 현재 eSTREAM 프로젝트에서 표준화가 진행 중에 있다. 이에 본 논문에서는 센서 노드에 가장 적합한 스트림 암호를 찾기 위해서 eSTREAM의 2단계에 제출 되어있는 스트림 암호들 중 소프트웨어용 암호 7개를 구현하고 성능을 비교한다. 또한 참조 구현으로서 하드웨어용 스트림 암호 및 AES-CTR에 대한 실험 결과도 제시한다. 본 논문의 실험 결과에 따르면 위 스트림 암호 중 Dragon이 속도 측면에서 가장 효율적인 것으로 나타났으며, 초당 약 12.5KB의 암호화 성능을 보여 센서 노드에서 사용하기에 적합한 것으로 판단된다.

  • PDF

Design of Memory-Efficient Octree to Query Large 3D Point Cloud (대용량 3차원 포인트 클라우드의 탐색을 위한 메모리 효율적인 옥트리의 설계)

  • Han, Soohee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.1
    • /
    • pp.41-48
    • /
    • 2013
  • The aim of the present study is to design a memory-efficient octree for querying large 3D point cloud. The aim has been fulfilled by omitting variables for minimum bounding hexahedral (MBH) of each octree node expressed in C++ language and by passing the re-estimated MBH from parent nodes to child nodes. More efficiency has been reported by two-fold processes of generating pseudo and regular trees to declare an array for all anticipated nodes, instead of using new operator to declare each child node. Experiments were conducted by constructing tree structures and querying neighbor points out of real point cloud composed of more than 18 million points. Compared with conventional methods using MBH information defined in each node, the suggested methods have proved themselves, in spite of existing trade-off between speed and memory efficiency, to be more memory-efficient than the comparative ones and to be practical alternatives applicable to large 3D point cloud.

Scalable Cluster Overlay Source Routing Protocol (확장성을 갖는 클러스터 기반의 라우팅 프로토콜)

  • Jang, Kwang-Soo;Yang, Hyo-Sik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.3
    • /
    • pp.83-89
    • /
    • 2010
  • Scalable routing is one of the key challenges in designing and operating large scale MANETs. Performance of routing protocols proposed so far is only guaranteed under various limitation, i.e., dependent of the number of nodes in the network or needs the location information of destination node. Due to the dependency to the number of nodes in the network, as the number of nodes increases the performance of previous routing protocols degrade dramatically. We propose Cluster Overlay Dynamic Source Routing (CODSR) protocol. We conduct performance analysis by means of computer simulation under various conditions - diameter scaling and density scaling. Developed algorithm outperforms the DSR algorithm, e.g., more than 90% improvement as for the normalized routing load. Operation of CODSR is very simple and we show that the message and time complexity of CODSR is independent of the number of nodes in the network which makes CODSR highly scalable.

Hop Based Gossiping Protocol (HoGoP) for Broadcasting Message Services in Wireless Sensor Networks (무선 센서 망에서 브로드캐스팅 메시지 서비스를 위한 홉 기반 가십 프로토콜)

  • So, Won-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1B
    • /
    • pp.144-153
    • /
    • 2010
  • Flooding based routing protocols are usually used to disseminate information in wireless sensor networks. Those approaches, however, require message retransmissions to all nodes and induce huge collision rate and high energy consumption. In this paper, HoGoP (Hop based Gossiping Protocol) in which all nodes consider the number of hops from sink node to them, and decide own gossiping probabilities, is introduced. A node can decide its gossiping probability according to the required average reception percentage and the number of parent nodes which is counted with the difference between its hop and neighbors' ones. Therefore the decision of gossiping probability for network topology is adaptive and this approach achieves higher message reception percentage with low message retransmission than the flooding scheme. Through simulation, we compare the proposed protocol with some previous ones and evaluate its performance in terms of average reception percentage, average forwarding percentage, and forwarding efficiency. In addition, average reception percentage is analyzed according to the application requirement.

Modified LEACH Protocol improving the Time of Topology Reconfiguration in Container Environment (컨테이너 환경에서 토플로지 재구성 시간을 개선한 변형 LEACH 프로토콜)

  • Lee, Yang-Min;Yi, Ki-One;Kwark, Gwang-Hoon;Lee, Jae-Kee
    • The KIPS Transactions:PartC
    • /
    • v.15C no.4
    • /
    • pp.311-320
    • /
    • 2008
  • In general, routing algorithms that were applied to ad-hoc networks are not suitable for the environment with many nodes over several thousands. To solve this problem, hierarchical management to these nodes and clustering-based protocols for the stable maintenance of topology are used. In this paper, we propose the clustering-based modified LEACH protocol that can applied to an environment which moves around metal containers within communication nodes. In proposed protocol, we implemented a module for detecting the movement of nodes on the clustering-based LEACH protocol and improved the defect of LEACH in an environment with movable nodes. And we showed the possibility of the effective communication by adjusting the configuration method of multi-hop. We also compared the proposed protocol with LEACH in four points of view, which are a gradual network composition time, a reconfiguration time of a topology, a success ratio of communication on an containers environment, and routing overheads. And to conclude, we verified that the proposed protocol is better than original LEACH protocol in the metal containers environment within communication of nodes.

Multi channel reservation scheme for underwater sensor network (수중 센서 네트워크에서 다중 채널 예약방법)

  • Lee, Dong-Won;Kim, Sun-Myeng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.336-339
    • /
    • 2011
  • In the RTLS(Real Time Location Based System), in case of existing a number of moving target, extremely complecated data flow is can be occurred. In the network where single gateway exists, various data which was collected from sensor node is transmitted along the simple route as time goes by. In case of multi-gateway configuration, the collected data is transmitted through diverse routes rather than simple route. This kind of data causes jams on nodes and this brings down the performance of the network. Different from existing studies, in this thesis, MAC (Media Access Control) protocol which minimizes data collision between nodes and guarantees QoS(Quality of Service) is suggested, in order to communicate efficiently in multi-gateway underwater sensor network environment. In the suggested protocol, source node which wants to transmit data makes a channel reservation to a number of destination node using a RTS packet. Source node reserves a channel without collision, by scheduling CTS response time using expected delay information from neighbor nodes. Once the reservation is made, source node transmit data packet without collision. This protocol analyzes/estimates the performance compared to a method provided from existing studies via simulation. As a results of the analysis, it was comfirmed that the suggested method has better performance, such as efficiency and delay.

  • PDF

Delayed CTS Transmission Scheme for Fairness Enhancement in UWASNs (수중 센서네트워크에서 공평성을 위한 CTS 전송 지연 기법)

  • Lee, Dong-Won;Kim, Sun-Myeng;Yang, Yeon-Mo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.3
    • /
    • pp.19-25
    • /
    • 2012
  • Underwater sensor networks (UWSNs) employ acoustic channels for communications. One of the main characteristics of the underwater acoustic channel is long propagation delay. Previously proposed MAC (medium access control) protocols for wireless sensor networks cannot be directly used in UWSNs due to the long propagation delay. The long propagation delay and uneven nodes deployments cause spatial fairness in UWSNs. Therefore, a new MAC protocol for UWSNs needs to be developed to provide efficient communications. In this paper, we propose an efficient MAC protocol in order to alleviate the fairness problem. In the proposed scheme, when a node receives a RTS packet, it does not immediately send back but delays a CTS packet. The node collects several RTS packets from source nodes during the delay time. It chooses one of the RTS packets based on the queue status information. And then, it sends a CTS packet to the source node which sent the chosen RTS packet. The performance of the proposed scheme is investigated via simulation. Simulation results show that our scheme is effective and alleviates the fairness problem.

Detecting Inner Attackers and Colluded nodes in Wireless Sensor Networks Using Hop-depth algorithm (Hop-depth 알고리즘을 이용한 무선 센서 네트워크상에서의 내부공격자 및 공모노드 검출)

  • Rhee, Kang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.1
    • /
    • pp.113-121
    • /
    • 2007
  • Commonly, in the Sensor Network that composed with multiple nodes uses Ad-hoc protocol to communicate each other. Each sensed data packets are collected by base node and processed by Host PC. But the Ad-hoc protocol is too vulnerable to Sinkhole attack, where the intruder attracts surrounding nodes with unfaithful routing information, and then performs selective forwarding or changes the data passing through it. The Sinkhole attack increases overhead over the network and boosts energy consumption speed to decrease network's life time. Since the other attacks can be easily adopted through sinkhole attack, the countermeasure must be considered carefully. In this paper, we proposed the Hop-depth algorithm that detects intruder in Sinkhole attack and colluded nodes. First, the proposed algorithm makes list of suspected nodes and identifies the real intruder in the suspected node list through the Hop-depth count value. And recalculates colluder's path information to find the real intruder. We evaluated the performance of the proposed algorithm using NS2. We compared and analyzed the success ratio of finding real intruder, false positive ratio, false negative ratio, and energy consumption.

Dynamic Probabilistic Flooding Algorithm based-on the Number of Child and Sibling Nodes in Wireless Sensor Networks (무선 센서 네트워크에서 자식 노드 수와 형제 노드 수에 따른 동적 확률기반 플러딩 알고리즘)

  • Jeong, Hyo-Cheol;Yoo, Young-Hwan
    • The KIPS Transactions:PartC
    • /
    • v.17C no.6
    • /
    • pp.499-504
    • /
    • 2010
  • The flooding is the simplest and effective way to disseminate a packet to all nodes in a wireless sensor network (WSN). However, basic flooding makes all nodes transmit the packet at least once, resulting in the broadcast storm problem in a serious case, in turn network resources become severely wasted. Particularly, power is one of the most valuable resources of WSNs as nodes are powered by battery, then the waste of energy by the basic flooding lessens the lifetime of WSNs. In order to solve the broadcast storm problem, this paper proposes a dynamic probabilistic flooding that utilizes the neighbor information like the number of child and sibling nodes. Simulation results show that the proposed method achieves a higher packet delivery ratio with the similar number of duplicate packets as compared to existing schemes.