• Title/Summary/Keyword: 노내시험부

Search Result 10, Processing Time 0.034 seconds

Characteristics of flow-induced vibration for inner assembly of in-pile test section (노내시험부 내부집합체에 대한 유체유발진동특성)

  • Lee, Han-Hee;Lee, Jong-Min;Lee, Chung-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.250-253
    • /
    • 2006
  • The in-pile Section (IPS) is subjected to flow-induced vibration(FIV) due to the flow of the primary coolant and then the structural integrity. The in-pile Section (IPS) of 3-pin Fuel Test Loop(FTL) shall be installed in the vortical hole call IR1 of HANARO reactor core. In order to verify the velocity and displacement both the inside region of IPS at the annular region of IPS, the vibration was measured by varing the flow rate on both regions. The displacements of fuel assembly in the in-pile Section (IPS) were found to be lower than the values of allowable design criteria.

  • PDF

Design of Vessel Assembly for Fuel Irradiation Test in Reactor (원자로 내 핵연료조사시험용 압력용기조립체 설계)

  • Park, Kook-Nam;Lee, Jong-Min;Chi, Dae-Young;Park, Su-Ki;Lee, Chung-Young;Kim, Young-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.383-387
    • /
    • 2004
  • The Fuel Test Loop (FTL) consists of In-Pile Test Section (IPS) and Out-of-Pile System (OPS). The test condition in IPS such as pressure, temperature and quality of the main cooling water, can be controlled by the OPS. The FTL has been developed to be able to irradiate three pins to the core irradiation hole (IR1 hole) by considering for its utility and user's irradiation requirement. The IPS vessel assembly (IVA) consists of IPS head, outer pressure vessel, inner pressure vessel, inner assembly and test fuel carrier. The IVA is approximately 5.6 m long and fits within a 74 mm in diameter envelope over the full height of the chimney. Above the top of the chimney, the head of the IPS is enlarged to allow the closure flanges and pipe work connections. IVA was designed to test the CANDU and PWR nuclear fuel pin together. Specially, wished to minimize interference by nuclear fuel change in design and synthesize these items and shape design for IVA.

  • PDF

The Construction Work Completion of the Fuel Test Loop (핵연료 노내조사시험설비 설치공사 완료)

  • Park, Kook-Nam;Lee, Chung-Young;Chi, Dae-Young;Park, Su-Ki;Shim, Bong-Sik;Ahn, Sung-Ho;Kim, Hark-Rho;Lee, Jong-Min
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.291-295
    • /
    • 2007
  • FTL(Fuel Test Loop) is a facility that confirms performance of nuclear fuel at a similar irradiation condition with that of nuclear power plant. FTL consists of In-Pile Test Section (IPS) and Out-Pile System (OPS). FTL construction work began on August, 2006 and ended on March, 2007. During Construction, ensuring the worker's safety was the top priority and installation of the FTL without hampering the integrity of the HANARO was the next one. Task Force Team was organized to do a construction systematically and the communication between members of the task force team was done through the CoP(community of Practice) notice board provided by the Institute. The installation works were done successfully overcoming the difficulties such as on the limited space, on the radiation hazard inside the reactor pool, and finally on the shortening of the shut down period of the HANARO. Without a sweet of the workers of the participating company of HEC(Hyundae Engineering Co, Ltd), HDEC(HyunDai Engineering & Construction Co. Ltd), equipment manufacturer, and the task force team, it is not possible to install the FTL facility within the planned shutdown period. The Commissioning of the FTL is on due to check the function and the performance of the equipment and the overall system as well. The FTL shall start operation with high burn up test fuels in early 2008 if the commissioning and licensing progress on schedule.

  • PDF

The Assembly and Test of Pressure Vessel for Irradiation (조사시험용 압력용기의 조립 및 시험)

  • Park, Kook-Nam;Lee, Jong-Min;Youn, Young-Jung;June, Hyung-Kil;Ahn, Sung-Ho;Lee, Kee-Hong;Kim, Young-Ki;Kennedy, Timothy C.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.2
    • /
    • pp.179-184
    • /
    • 2009
  • The Fuel Test Loop(FTL) which is capable of an irradiation testing under a similar operating condition to those of PWR(Pressurized Water Reactor) and CANDU(CANadian Deuterium Uranium reactor) nuclear power plants has been developed and installed in HANARO, KAERI(Korea Atomic Energy Research Institute). It consists of In-Pile Section(IPS) and Out-of Pile System(OPS). The IPS, which is located inside the pool is divided into 3-parts; the in-pool pipes, the IVA(IPS Vessel Assembly) and the support structures. The test fuel is loaded inside a double wall, inner pressure vessel and outer pressure vessel, to keep the functionality of the reactor coolant pressure boundary. The IVA is manufactured by local company and the functional test and verification were done through pressure drop, vibration, hydraulic and leakage tests. The brazing technique for the instrument lines has been checked for its functionality and performance. An IVA has been manufactured by local technique and have finally tested under high temperature and high pressure. The IVA and piping did not experience leakage, as we have checked the piping, flanges, assembly parts. We have obtained good data during the three cycle test which includes a pressure test, pressure and temperature cycling, and constant temperature.

The Design Status of the Irradiation Facility for Fuel Test (핵연료 시험용 노내조사시험설비의 설계 현황)

  • Park, Kook-Nam;Sim, Bong-Shick;Ahn, Sung-Ho;Yoo, Seong-Yeon
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.310-315
    • /
    • 2007
  • The FTL has been developed to be able to irradiate test fuels at the irradiation hole(IR1 hole) by considering its utility and user's irradiation requirements. FTL consists of In-Pile Test Section (IPS) and Out-of-Pile System (OPS). Test condition in IPS such as pressure, temperature and the water quality, can be controlled by OPS. For safety assurance IPS is designed to have dual stainless steel pressure vessel and OPS is composed of main cooling water system, emergency cooling water system, LMP(letdown, make-up, purification) system, etc. FTL Conceptual design was set up in 2001, basic design had completed including a design requirement, basic piping & instrument diagram (P&ID), and the detail design in 2004. In 2005, the development team carried out purchase and manufacture hardware and make a contract for construction work. FTL construction work began on August, 2006 and ended on March, 2007. After FTL development which is expected to be finished by 2008, FTL will be used for the irradiation test of the new PWR-type fuel and can maximize the usage of HANARO.

  • PDF

The Construction Status of Fuel Test Loop Facility (핵연료 노내조사시험설비의 시공 현황)

  • Park, Kook-Nam;Lee, Chung-Young;Kim, Hark-Rho;Yoo, Hyun-Jae;Yoo, Seong-Yeon
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.305-309
    • /
    • 2007
  • FTL(Fuel Test Loop) is a facility that confirms performance of nuclear fuel at a similar irradiation condition with that of nuclear power plant. FTL construction work began on August, 2006 and ended on March, 2007. During Construction, ensuring the worker's safety was the top priority and installation of the FTL without hampering the integrity of the HANARO was the next one. The installation works were done successfully overcoming the difficulties such as on the limited space, on the radiation hazard inside the reactor pool, and finally on the shortening of the shut down period of the HANARO. The Commissioning of the FTL is to check the function and the performance of the equipment and the overall system as well. The FTL shall start operation with high burn up test fuels in early 2008 if the commissioning and licensing progress on schedule.

  • PDF

Fluid-Elastic Parameters for Reactor Internals Model Testing

  • Lee, Hae
    • Nuclear Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.286-292
    • /
    • 1980
  • Similitude requirement for model testing of flow induced vibration of reactor internals are investigated. In depth discussions on the Reynolds number effects are made. For valid model tests of fuel assemblies vibrating in its fundamental natural frequency, reduced frequency (fD/U), and dam ping parameter( $m_{c}$$\delta$$_{c}$ $D_{\rho}$$^2$) are two most important parameters.ers.

  • PDF