• Title/Summary/Keyword: 네오디뮴

Search Result 52, Processing Time 0.023 seconds

Crystallization of Neodymium carbonate from Neodymium Chloride Solution (염화네오디뮴 수용액으로부터 탄산네오디뮴 결정화)

  • Kim, Chul-Joo;Yoon, Ho-Sung;Kim, Joon-Soo;Lee, Seung-Won
    • Resources Recycling
    • /
    • v.16 no.2 s.76
    • /
    • pp.23-31
    • /
    • 2007
  • In this study, the crystallization of neodymium carbonate from neodymium chloride solution by addition of ammonium bicarbonate was investigated. The concentration of reactants such as neodymium chloride and ammonium bicarbonate, and reaction temperature play an important part in order to obtain the crystal of neodymium carbonate. It seemed that amorphous neodymium carbonate was prepared by aggregation of primary particles formed through nucleation. If reaction rate was increased by increasing the concentration of reactants and reaction temperature, then neodymium carbonate crystal could be obtained. Lanthanite-type neodymium carbonate[$Nd_2(CO_3)_3{\cdot}8H_2O$] and tengerite-type neodymium carbonate[$Nd_2(CO_3)_3{\cdot}2.5H_2O$] could be obtained with reaction renditions. Lanthanite-type neodymium carbonate was sensitive to temperature. The thermal decomposition of neodymium carbonate contained the processes or dehydration, decarbonation and crystalization of $Nd_2O_3$. The shape of lanthanite-type neodymium carbonate was irregular lump type, and tengerite-type neodymium carbonate had the shape of needle type. The shape of $Nd_2O_3$ was affected by the shape of neodymium carbonate.

Recovery of Neodymium from NdFeB Oxidation-Roasted Scrap by Acetic Acid Leaching (NdFeB계 영구자서 산화배소 스크랩의 초산침출에 의한 네오디뮴 회수)

  • Yoon, Ho-Sung;Kim, Chul-Joo;Kim, Joon-Soo
    • Resources Recycling
    • /
    • v.13 no.6
    • /
    • pp.43-48
    • /
    • 2004
  • For the separation of neodymium from NdFeB permanent magnet scrap, the scrap was roasted for oxidizing, and leached with acetic acid followed by fractional crystallization for selective separation. From the analysis results of the leached solution, the optimum condition for the recovery of neodymium was found that leaching temperature, leaching time and pulp density are 80$^{\circ}C$, 3 hours, and 35%, respectively. At this optimum condition, more than 90% of neodymium could be recovered. Concentration of neodymium acetate in acetic acid. The optimum condition for the recovery of neodymium acetate crystal from the leached solution was that the initial leaching solution was evaporated until the remaining volume was about 1/5 of the initial volume. At this condition, 67.5% of neodymium was recovered from the leached solution. The neodymium remaining in the concentrated solution was recovered by reacting it with oxalic acid.

A Study on the Characterization of Neodymium Oxalate by Reaction Crystallization (반응성 결정화에 의한 네오디뮴 옥살레이트 특성 고찰)

  • Yoon, Ho-Sung;Kim, Chul-Joo;Kim, Joon-Soo
    • Resources Recycling
    • /
    • v.13 no.5
    • /
    • pp.37-44
    • /
    • 2004
  • In this study, neodymium oxalate powders were prepared by injecting oxalic acid to the neodymium chloride solution resulted from the acid leaching solution of NdFeB magnet scrap. The effect of experimental conditions on the characteristics of neodymium oxalate powders were investigated. Neodymium oxalate was aggregated by primary particles formed by nucleation, and average size of aggregates was affected by experimental conditions. In a constant volume, increase of reactants affected the average size of aggregate formed by collision of primary particles. In a constant concentration of reactants, agitation speed decreased the size of aggregate due to breakage of particles attached on the surface of aggregate. The number of primary particles decreased with increasing reaction temperature, and the size of aggregates decreased due to the decrease of collision probability. From the results of decomposition behavior of neodymium oxalate, oxalate decomposed from $400^{\circ}C$, and neodymium oxide began to crystallize at above $620^{\circ}C$.

Separation of Neodymium from NdEeB Permanent Magnetic Scrap (NdFeB계 영구자석 스크랩으로부터 네오디뮴의 분리회수)

  • Yoon Ho-Sung;Kim Chul-Joo;Lee Jin-Yeung;Kim Sung-Don;Kim Joon-Soo;Lee Jae-Chun
    • Resources Recycling
    • /
    • v.12 no.6
    • /
    • pp.57-63
    • /
    • 2003
  • In this study, the separation of neodymium was investigated from NdFeB permanent magnet scrap. Decomposition and leach-ing process of NdFeB permanent magnet scrap by oxidation roasting and sulfuric arid leaching were examined. Neodymium could be separated from iron by double salt precipitation using sodium sulfate. The optimum conditions established for decom-position and leaching are as follows: oxidation roasting temperature is $500^{\circ}C$ for sintered scrap and $700^{\circ}C$ for bonded scrap, concentration of sulfuric acid in leaching solution is 2.0 M, leaching temperature and time is $50^{\circ}C$ and 2 hrs, and pulp density is 15%. The leaching yield of neodymium and iron was 99.4% and 95.7% respectively. The optimum condition for separation of neodymium by double-salt precipitation was 2 equivalents of sodium sulfate and $50^{\circ}C$ The yield of neodymium was above 99.9%.

A Basic Study on Non-aqueous Electrolysis of Neodymium for Room-temperature Metallurgy (상온제련을 위한 네오디뮴의 비수계 전해 기초연구)

  • Park, Jesik;Lee, Churl Kyoung
    • Resources Recycling
    • /
    • v.27 no.4
    • /
    • pp.29-35
    • /
    • 2018
  • In this study, the electrochemical redox behavior of neodymium in non-aqueous electrolytes was investigated to confirm the possibility of neodymium metallurgy at room temperature. The non-aqueous electrolytes include ionic liquids such as $[C_4mim]PF_6$, $[C_4mim]Cl$, and $[P_{66614}]PF_6$, ethanol which are highly soluble in neodymium salts, and mixed electrolytes based on carbonate with highly electrochemical stability. The electrochemical redox properties of neodymium were better than those of other electrolytes in the case of the mixed electrolyte based on ethylene carbonate (EC)/di-ethylene carbonate (DEC). Ethanol was added to improve the physical properties of the mixed electrolyte. Thorough the analysis about ionic conductivity of EC/DEC ratio, ethanol content and $NdCl_3$ concentration, the best electrolyte composition was 50 vol% content of ethanol and 0.5 M of $NdCl_3$. Using cyclic voltametry and linear sweep voltametry, a current peak estimated at -3.8 V (vs. Pt-QRE) was observed as a limiting current of neodymium reduction. Potentiostatic electrolysis for 18 hours at room temperature at -6 V (vs. Pt-QRE) confirmed that metallic neodymium was electrodeposited.

Hydrodesulfuriztion of Thiophene over Neodymium Added Nickel Catalysts (네오디뮴이 첨가된 니켈 촉매의 티오펜 탈황 반응)

  • Moon, Young-Hwan;Ihm, Son-Ki
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.913-924
    • /
    • 1996
  • In this study HDS(hydrodesulfurization) of thiophene was researched over nickel catalysts added with small amounts of neodymium which were prepared by different methods such as unsupported coprepricipitated NdNi catalysts, unsupported intermetallic $NdNi_5$ catalysts, and carbon supported NdNi catalyst. The HDS activity was remarkably increased when a small amounts of neodymium was added to unsupported coprecipitated Ni catalysts. Thus it was known that the role of Nd is important in HDS of thiophene of Ni catalysts. For the case of unsupported intermetallic $NdNi_5$, the intermetallic crystallinity was destroyed to oxide and sulfide after calcination and presulfidation respectively. The HDS activity of thiophene can be explained by surface area of unsupported catalysts. And Nd acts like as structural promoter keeping the high surface area of unsupported catalysts. The HDS activity was increased by each ten times based on 1 gr. of nickel in the order of unsupported intermetallic $NdNi_5$, unsupported coprecipitated NdNi, and carbon supported NdNi catalysts according to different preparation method of catalysts.

  • PDF

Structure and Optical Properties of ZnS:Nd Thin filmsss Produced by RF Sputtering and Rapid Thermal Annealing Process (RF 스퍼터링 및 급속열처리 공정으로 제작한 ZnS:Nd 박막의 구조 및 광학적 특성)

  • Kim, Won-Bae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.2
    • /
    • pp.233-240
    • /
    • 2021
  • For the production of neodymium-doped zinc sulfide thin films in various amounts, zinc sulfide and neodymium were simultaneously deposited using an RF magnetron sputtering equipment to form a thin films, and rapid thermal annealing was performed at 400℃ for 30 minutes as a post-treatment process. The structure, shape, and optical properties of ZnS thin films having various neodymium doping contents (0.35at.%, 1.31at.%, 1.82at.% and 1.90at.%) were studied. The X-ray diffraction pattern was grown to a (111) cubic structure in all thin films. The surface and structural morphology of the thin films due to the neodymium doping content was explained through SEM and AFM images. Only elements of Zn, S, and Nd that do not contain other impurities were identified through EDAX. The transmittance and band gap of the prepared thin films were confirmed using the UV-vis spectrum.

Preparation of Iron Nano-particle by Slurry Reduction Method from Leaching Solution of Spent Nd magnet (폐네오디뮴 자석 침출용액으로부터 Slurry 환원법을 이용한 철 Nano 분말 제조)

  • Ahn, Jong-Gwan;Gang, Ryunji;You, Haebin;Yoon, Ho-Sung
    • Resources Recycling
    • /
    • v.23 no.6
    • /
    • pp.22-29
    • /
    • 2014
  • Recycling process of iron should be developed for efficient recovery of neodymium (Nd), rare metal, from acid-leaching solution of Nd magnet. In this study, $FeCl_3$ solution as iron source was used for preparation of iron nano particles with the condition of various factors, such as, reductant, and surfactant. $Na_4P_2O_7$ and Polyvinylpyrrolidone (PVP) as surfactants, $NaBH_4$ as reductant, and palladium chloride ($PdCl_2$) as a nucleation seed were used. Iron powder was analyzed by using XRD, SEM for measuring shape and size. Iron nano particles were prepared at the ratio of 1:5 (Fe (III) : $NaBH_4$). Size and shape of iron particles were round-form and 50 ~ 100 nm size. Zeta-potential of iron at the 100 mg/L of $Na_4P_2O_7$ was negative value, which was good for dispersion of metal particle. When $Na_4P_2O_7$ (100 mg/L), PVP($FeCl_3:PVP$ = 1 : 4, w/w) and Pd($FeCl_3:PdCl_2$ = 1 : 0.001, w/w) were used, iron nano particles which were round-shape, well-dispersed and near 100 nm-sized range. In this condition, $FeCl_3$ solution changed with spent Nd leachate solution, and then it is possible to be made round-formed iron nano particles at pH 9 and at the reaction bath over 20 L which is not include any surfactant.

Double Salt Precipitation Behavior of Rare Earth by Sodium Sulfate in Sulfuric Liquor of Waste Permanent Magnet Scrap (폐 영구자석 스크랩 황산침출용액으로부터 황산나트륨에 의한 희토류 원소 복염침전 거동 고찰)

  • Yoon, Ho-Sung;Kim, Chul-Joo;Chung, Kyeong Woo;Kim, Ji-Hye;Lee, Eun-Ji;Yoo, Seung-Joon
    • Resources Recycling
    • /
    • v.26 no.5
    • /
    • pp.39-47
    • /
    • 2017
  • In this study, the precipitation of rare earth-sodium sulfate with sodium sulfate was conducted in order to separate rare earth from Fe in rare earth sulfate solution. Neodymium (Nd) was easily precipitated as Nd-sulfate salt with sodium sulfate, on the other hand, excessive sodium sulfate was needed for the precipitation of Dy-sulfate salt. Also neodymium not only promoted the precipitation of dysprosium sulfate salt but also increased recovery of dysprosium sulfate salt in sulfuric acid solution. At the condition of $60^{\circ}C$ precipitation temperature, 3 h reaction time, 7 equivalents sodium sulfate, the recovery of neodymium and dysprosium sulfate salt was 99.7% and 94.3% respectively from the sulfuric acid solution containing Nd of 23.39 mg/ml and Dy of 8.67 mg/ml. Lastly, from the results of separation of Dy to Nd by the method of sulfate double salt, the effect of salting out with NaCl is important to increase the grade of Dy, and 98.7% of Dy grade could be obtained in this study.