• Title/Summary/Keyword: 냉염

Search Result 14, Processing Time 0.03 seconds

An Experimental Study on the Two Stage Ignition of Cool Flame and Hot Flame in HCCI Engine According to Fuel Composition (연료조성에 따른 HCCI 엔진의 냉염 및 열염의 2단연소 특성에 관한 실험적 연구)

  • 이기형;김형민;류재덕;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.17-24
    • /
    • 2004
  • As the environmental pollution becomes serious global problem, the regulation of emission exhausted from automobiles is strengthened. Therefore, it is very important to know how to reduce the NOx and PM simultaneously in diesel engines, which has lot of merits such as high thermal efficiency, low fuel consumption and durability. By this reason, the new concept called as Homogeneous Charge Compression Ignition(HCCI) engines are spotlighted because this concept reduced NOx and P.M. simultaneously. However, it is well known that HCCI engines increased HC and CO. Thus, the investigation of combustion characteristics which consists cool and hot flames for HCCI engines were needed to obtain the optimal combustion condition. In this study, combustion characteristics for direct injection type HCCI engine such as quantity of cool flame and hot flame, ignition timing and ignition delay were investigated to clarify the effects of these parameters on performance. The results revealed that diesel combustion showed the two-stage ignition of cool flame and hot flame, the rate of cool flame increase and hot flame decrease with increasing intake air temperature. On the other hand, the gasoline combustion is the single-stage ignition and ignition timing is near the TDC. In addition mixed fuel combustion showed different phenomenon, which depends on the ratio of gasoline component. Ignition timing of mixed fuel is retarded near the TDC and the ignition delay is increased according to ratio of gasoline.

Ignition Characteristics of n-Dodecane Fuel Droplet on a Hot Surface (n-Dodecane 연료의 고온면 점화특성)

  • Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.24 no.1
    • /
    • pp.116-121
    • /
    • 2010
  • The present study has been performed to investigate the ignition characteristics of a n-dodecane fuel droplet on the hot surface. Simplified bench scale test setup was built to examine the effect of air flow on the ignition temperature of fuel droplet. IR pyrometric sensor was used to measure the surface temperature, the measured temperature using IR pyrometer was directly compared with k-type thermocouple. The ignition of n-dodecane fuel droplet was divided into two stage - cool flame and hot flame - with the air flow rate except the case of air flow rate 3.0 lpm. The ignition temperature and probability was greatly affected by the air flow rate and the MHSIT of the present study was about $300^{\circ}C$ for air flow rate of 0.5 lpm.

Simplified Reaction Scheme of Hydrocarbon Fuels and Its Application to Autoignition of n-Heptane (탄화수소계 연료의 축소반응모텔과 노말-헵탄(n-Heptane)의 자발화 현상)

  • 여진구
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.76-83
    • /
    • 2002
  • Mathematically and chemically simplified reaction scheme for n(heptane that simulates autoignitions of the end gases in spark ignition engines has been developed and studied computationally. The five(equation model is described, to predict the essential features of hydrocarbon oxidation. This scheme has been calibrated against autoignition delay times measured in rapid compression machines. The rate constants, activation temperatures, Ta, Arrhenius pre-exponential constants, A, and heats of reaction for stoichiometric nheptane/air has all been optimized. Comparisons between computed and experimental autoignition delay times have validated the present simplified reaction scheme. The influences of heat loss and concentration of chain carrier at the beginning of compression upon autoignition delay times have been computationally investigated.

Simplified Reaction Scheme of Hydrocarbon Fuels and Its Application to Autoignition of Gasoline with Different Octane Numbers (탄화수소계 연료의 축소반응모델과 가솔린연료의 옥탄가 변화에 따른 자발화 지연시간)

  • 여진구
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.13-19
    • /
    • 2003
  • Mathematically simplified reaction scheme that simulates autoignitions of the end gases in spark ignition engines has been studied computationally. The five equation model is described, to predict the essential features of hydrocarbon oxidation. This scheme has been calibrated against autoignition delay times measured in rapid compression machines. The rate constants, activation temperatures, Ta, Arrhenius preexponential constants, A, and heats of reaction for stoichiometric n-heptane/air, iso-octane/air, and their mixtures have all been optimised. The optimisation has been guided by Morley's correlation of the ratio of chain branching to linear termination rates with octane number. Comparisons between computed and experimental autoignition delay times have validated the Present simplified reaction scheme and the influences of octane number upon autoignition delay times have been computationally investigated. It has been found that both cool flame and high temperature direct reactions can have an effect on autoignition delay times.

Combustion Characteristics of Premixed Charge Compression Ignition Diesel Engine using Mixed Fuels (혼합연료를 이용한 예혼합 압축착화 디젤엔진의 연소특성)

  • 조병호;이기형;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.58-64
    • /
    • 2002
  • A diesel engine has various merits such as high thermal-efficiency, superior fuel consumption and durability. Therefore the number of diesel engine in the world is increasing. As the seriousness of environmental pollution increases in the world, the method to reduce the noxious materials of CO2, NOx and P.M. is very important subject to correspond to exhaust gas regulations. A new concept, so called premixed charge compression ignition(PCCI), is focused among the various corresponding manners. In this study, we investigated the combustion characteristics of PCCI engine using a mixed fuels with that of commercial diesel engine. Finally we grasped a emission characteristics of PCCI engine. From this experiment, it could be found that NOx reduction is caused by the lower maximum temperature and soot reduction is caused by rapid combustion under diffusion combustion part. Also, it was found that 1st-combustion(cool flame) and 2nd-combustion(hot flame) is appeared in heat release curve, exhaust gas temperature is diminished and combustion variation is increased according to increasing of gasoline ratio.

A Study on the Characteristics of Mixture Formation and Combustion in the Premixed Charge Compression Ignition Engine (예혼합 압축착화 엔진의 혼합기 형성 및 연소 특성에 관한 연구)

  • Kim, Hyung-Min;Ryu, Jea-Duk;Lee, Ki-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.1-9
    • /
    • 2006
  • Recently, there has been an interest in premixed diesel engines as it has the potential of achieving a more homogeneous and leaner mixture close to TDC compared to conventional diesel engines. Because this concept reduced NOx and smoke emissions simultaneously. Early studies are shown that in a HCCI(Homogeneous Charge Compression Ignition) engine, the fuel injection timing and intake air temperature affect the mixture formation. The purpose of this study is to investigate characteristics of combustion and mixture formation according to injection timing and intake air temperature in a common rail direct injection type HCCI engine using an early injection method called the PCCI(Premixed Charge Compression Ignition). From this study, we found that the fuel injection timing and intake air temperature affect the mixture formation and in turn affects combustion in the PCCI engine.

Observation on the Ignition Delay Time of Cool and Thermal Flame of n-heptane/alcohol Blended Fuel at Low Temperature Combustion Regime (저온연소조건에서 n-heptane/alcohol 혼합연료의 냉염과 열염에 대한 착화지연 관찰)

  • Song, Jaehyeok;Kang, Kijoong;Ryu, Seunghyup;Choi, Gyungmin;Kim, Duckjool
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.4
    • /
    • pp.12-20
    • /
    • 2013
  • The ignition delay time is an important factor to understand the combustion characteristics of internal combustion engine. In this study, ignition delay times of cool and thermal flame were observed separately in homogeneous charge compression ignition(HCCI) engine. This study presents numerical investigation of ignition delay time of n-heptane and alcohol(ethanol and n-butanol) binary fuel. The $O_2$ concentration in the mixture was set 9-10% to simulate high exhaust gas recirculation(EGR) rate condition. The numerical study on the ignition delay time was performed using CHEMKIN codes with various blending ratios and EGR rates. The results revealed that the ignition delay time increased with increasing the alcohol fraction in the mixture due to a decrease of oxidation of n-heptane at the low temperature. From the numerical analysis, ethanol needed more radical and higher temperature than n-butanol for oxidation. In addition, thermal ignition delay time is sharply increasing with decreasing $O_2$ fraction, but cool flame ignition delay time changes negligibly for both binary fuels. Also, in high temperature regime, the ignition delay time showed similar tendency with both blends regardless of blending ratio and EGR rate.

An Experimental Study on the Characteristics of Combustion and Emission in a Gasoline Direct Injection Type HCCI Engine by Controlling Mixture Formation (가솔린 직접분사식 HCCI 엔진의 혼합기 제어에 의한 연소 및 배기 특성에 관한 실험적 연구)

  • 김형민;류재덕;이기형
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.24-30
    • /
    • 2004
  • As the environmental pollution becomes serious global problem, the regulation of emission exhausted from automobiles is strengthened. Therefore, it is very important to know how to reduce the NOx and PM simultaneously in diesel engines, which has lot of merits such as high thermal efficiency, low fuel consumption and durability. By this reason, the new concept called as Homogeneous Charge Compression Ignition(HCCI) engines are spotlighted because this concept reduced NOx and P.M. simultaneously. However, there is trade off between output and NOx in a HCCI engine. In this study, output and emission characteristics for a gasoline direct injection type HCCI engine were investigated to clarify the effects of intake air temperature, injection time and mixture formation. From these experiments, we found that the smoke was not produced when the fuel was injected earlier than BTDC 90$^{\circ}$. In addition, the output was increased because of delay of ignition time and NOx emission was decreased because of homogeneous charge of first injection in case of split injection.