• Title/Summary/Keyword: 냉방기 Control

Search Result 66, Processing Time 0.032 seconds

Effect of Root-zone Local Cooling on Seedling Growth of Tomato (근권부 국부 냉방이 토마토 묘 생육에 미치는 영향)

  • Kim, Eun Ji;Hwang, Hyunseung;Ju, Se Hun;Na, Haeyoung
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.286-291
    • /
    • 2022
  • The effect of root-zone local cooling on seedling growth of tomato was investigated. Lower pipe cooling was used for local cooling of the root zone, and the root zone temperature was set at 20 and 25℃. There was no difference in plant height, root length, and leaf number according to local cooling temperature. Leaf area, fresh weight, dry weight, and chlorophyll content of the shoot and root was higher in the 25℃ than those of 20℃ at 28 DAS. These results showed that cooling for seedling growth of tomato 25℃ is sufficient considering energy efficiency. This study will be helpful in the development of local cooling technology that can reduce the energy required for cooling during the production of tomato seedlings in the high temperature season.

Comparison of Outside Design Weather Data for Greenhouse Heating and Cooling (온실의 냉.난방 설계용 기상자료의 비교분석)

  • 남상운
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2000.10b
    • /
    • pp.94-97
    • /
    • 2000
  • 온실의 환경설계 중에서 가장 기본이 되는 냉ㆍ난방 설비용량의 결정을 위하여는 설계외기온(냉ㆍ난방설계), 외기의 습구온도 및 수평면 일사량(냉방설계)과 같은 기상자료가 필요하다. 시설재배에 있어서 환경설비의 용량 부족은 혹한기 또는 혹서기에 작물의 생육에 치명적인 영향을 미칠 수 있다. 또한 설비용량의 과대설계는 설치비 면에서 비경제적일 뿐만 아니라 에너지의 효율적 이용 측면에서도 불리하므로 적정 설비용량의 결정은 매우 중요하고, 따라서 설계용 기상자료의 선택은 매우 신중을 기하여야 한다. (중략)

  • PDF

An Experimental Study on Radiation/Convection Hybrid Air-Conditioner (복사-대류 겸용 하이브리드 냉방기에 대한 실험 연구)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.288-296
    • /
    • 2019
  • Radiation cooling has used ceilings or floors as cooling surfaces. In such cases, to avoid moisture condensation on the surface, the surface temperature needs be higher than the dew point temperature or an additional dehumidifier is added. In this study, with a goal for residential application, intentional moisture condensation on the cooling surface was attempted, which increased the cooling capacity and improved the indoor comfortness. This method included two separate refrigeration cycles - convection-type dehumidifying cycle and the panel cooling cycle. Test results on the panel cooling cycle showed that, at the standard outdoor ($35^{\circ}C/24^{\circ}C$) and indoor ($27^{\circ}C/19.5^{\circ}C$) condition, the refrigerant flow rate was 8.8 kg/h, condensation temperature was $51^{\circ}C$, evaporation temperature was $8.8^{\circ}C$, cooling capacity was 376 W and COP was 1.75. Furthermore, the panel temperature was uniform within $1^{\circ}C$ (between $13^{\circ}C$ and $14^{\circ}C$). As the relative humidity decreased, the cooling capacity decreased. However, the power consumption remained approximately constant. In the convection-type dehumidification cycle, the refrigerant flow rate was 21.1 kg/h, condensation temperature was $61^{\circ}C$, evaporation temperature was $5.0^{\circ}C$, cooling capacity was 949 W and COP was 2.11 at the standard air condition. When both the radiation panel cooling and the dehumidification cycle operated simultaneously, the cooling capacity of the radiation panel cycle was 333 W and that of the dehumidification cycle was 894 W, and the COP was 1.89. As the fan flow rate decreased, both the cooling capacity of the radiation panel and the dehumidification cycle decreased, with that of the dehumidification cycle decreasing at a higher rate. Finally, a possible control logic depending on the change of the cooling load was proposed based on the results of the present study.

Effect of Cooling Timing in the Root Zone on Substrate Temperature and Physiological Response of Sweet Pepper in Summer Cultivation (여름 파프리카 수경재배에서 근권 냉방 시간이 근권 온도와 생리적 반응에 미치는 영향)

  • Choi, Ki Young;Ko, Ji Yeon;Yoo, Hyung Joo;Choi, Eun Young;Rhee, Han Cheol;Lee, Yong-Beom
    • Horticultural Science & Technology
    • /
    • v.32 no.1
    • /
    • pp.53-59
    • /
    • 2014
  • This study aimed to determine an appropriate cooling timing in the root zone for lowering substrate temperature and its effect on physiological response of sweet pepper (Capsicum annum L. 'Orange glory') grown on coir substrate in summer, from the July 16 to October 15, 2012. Daily temperature of substrate, root activity, leaf water potential, first flowering date, and the number of fruits were measured by circulating cool water through a XL pipe in the root zone during either all day (all-day) or only night time (5 p.m. to 3 a.m.; night) from the July 23 to September 23, 2012. For comparison, no cooling (control) was also applied. Between the $23^{rd}$ of July and $31^{st}$ of August (hot temperature period), daily average temperatures in substrates were $25.6^{\circ}C$, $26.1^{\circ}C$, and $29.1^{\circ}C$ for the all-day and night treatment, and control respectively. About 1.8 to $5^{\circ}C$ lower substrate temperature was observed in both treatments compared to that of control. In sunny day ($600-700 W{\cdot}m^{-2}{\cdot}s^{-1}$), the highest temperature of substrate was measured between 4 p.m. and 5 p.m. under both the all-day and night treatments, whereas it was measured between 7 p.m. and 8 p.m. under the control. Substrate temperatures during the day (6 a.m. to 8 p.m.) and night (8 p.m. to 6 a.m.) differed depending on the treatments. During the day and night, averaged substrate temperature was lower about $3.3^{\circ}C$ and $4.0^{\circ}C$ for the all-day, and $2.1^{\circ}C$ and $3.4^{\circ}C$ for the night treatment, compared to that of control. In the all-day and night treatment, the TD [TD = temperature of (control)] was greater in bottom than that of other regions of the substrate. Between the day and night, no different TD values were observed under the all-day treatment, whereas under the night treatment there was difference with the greatest degree in the bottom of the substrate. During the hot temperature period, total numbers of days when substrate temperature was over $25^{\circ}C$ were 40, 23 and 27 days for the control, all-day, and night treatment, respectively, and the effect of lowering substrate temperature was therefore 42.5% and 32.5% for the all-day and night treatment, respectively, compared to that for the control. Root activity and leaf water potential of plants grown under the all-day treatment were significantly higher than those under the night treatment. The first flowering date in the all-day treatment was similar to that in the night treatment, but 4-5 day faster than in the control. Also, the number of fruits in both treatments was significantly higher than that in the control. However, there was no effect of root zone cooling on eliminating delay in fruiting caused by excessively higher air temperature (> $30^{\circ}C$), although the substrate temperature was reduced $18^{\circ}C$ to $5^{\circ}C$. These results suggest that the method of cooling root zone temperature need to be incorporated into the lowering growing temperature for growth and fruit set of health paprika.

Simultaneous Heating and Cooling Multi-Air Conditioning System for Agricultural Products Management (농수산물 관리를 위한 냉난방 동시형 멀티 에어컨 시스템)

  • Shin, Jin-Seob;Hong, Ji-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.65-70
    • /
    • 2020
  • In this paper, to establish a high-efficiency air-conditioning and heating system, we developed a simultaneous air-conditioning and heating system that can do both air-conditioning and heating at the same time. It was applied to hybrid plant plants to enable automation of complex farms. For this purpose, the heat exchanger, which functions as a condenser during heating, was required to function as an evaporator during cooling so that air conditioning and heating could be implemented simultaneously. For experiments, the simultaneous air conditioning system for heating and cooling was produced and applied to the plant factories in the farms so that plants could be grown, stored, and dried. As a result, a single system was able to control the temperature environment of agricultural products with an energy-saving system that simultaneously resolves heating and cooling. Therefore, efficient crop management was possible by implementing an air conditioning system that did not require installing air conditioners and boilers at the same time.

Energy saving control system of wireless base station utilizing natural air-conditioning (자연공조를 활용한 무선기지국 Energy절감 제어시스템)

  • Ryu, Gu-Hwan;Kwon, Chang-Hee
    • Journal of Digital Convergence
    • /
    • v.17 no.10
    • /
    • pp.223-232
    • /
    • 2019
  • With the development of the information communication industry, the size of the communication device has been reduced to a system that generates a large amount of heat. Therefore, since the amount of heat generated by the wireless equipment is large in the wireless base station, the energy consumption is continuously consumed and the failure of the wireless base station may occur. Therefore, in this study, The study was analyzed. As a research method, we performed base station with a lot of calorific value and electric charge. We selected 25 base stations and obtained data for two weeks. To ensure reliability, the room temperature was kept constant at $27^{\circ}C$, and the control system was installed and equiped for two weeks to obtain the date analysis. In order to calculate the test results in the study method, the instrument was used with a computer, a digital thermometer, and dust measurement. For the date analysis, we conducted a research study on 25 wireless basestations before and after the installation of Control Sysetm.

Studies of standard design proposal for evaporative cooling in summer glasshouse (여름철 유리온실의 증발냉각을 위한 설계기준안 연구)

  • 우영회;이정명;권영삼;남윤일;김형준;송천호;김동억
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1995.10a
    • /
    • pp.74-77
    • /
    • 1995
  • 냉동기등의 냉방장치에 의한 온실의 기온하강은 주간에 과다한 일사부하로 인하여 경제적으로 불가능하기 때문에 현재 증발냉각법이 주로 이용되고 있다. 그러나 증발냉각법의 구체적인 설계기준안에 대한 국내연구는 전무한 실정이다. 따라서 본 연구는 우리나라 기상여건을 고려하여 증발냉각법을 위한 설계기준안을 제시하고자 하였다. (중략)

  • PDF

Analysis on the transmittance of shading materials (차광재의 광 투과율 분석)

  • 이현우;이석건;김길동;이종원
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1999.11a
    • /
    • pp.241-244
    • /
    • 1999
  • 시설원예는 노지원예와 달리 인위적인 환경조절을 통하여 주년안정생산이 가능하여야 하고 단위면적당 생산성을 증대시키면서 품질향상을 극대화시키는 것이 생산의 목표이다. 따라서, 주년안정생산을 위하여 고온기에 작물생산이 가능하도록 시설내 고온환경을 조절해야할 것이다. 고온환경을 조절하기 위한 냉방방식에는 자연환기 및 팬을 이용한 온실내부의 공기를 치환하는 방법, 온실내ㆍ외부에 차광망을 설치하여 온실내로 유입되는 일사량의 일부를 차단하는 방법, 수분증발을 통하여 온실내부의 잠열을 빼앗는 증발냉각방식, 히트펌프나 에어컨을 이용한 기계적인 방법이 이용되고 있다. (중략)

  • PDF

Studies on the Performance Characteristics of an Electronically Controlled $CO_2$ Air Conditioning System for Fuel Cell Electric Vehicles (연료전지 자동차용 전자 제어식 $CO_2$ 냉방 시스템의 성능 특성에 관한 연구)

  • Kim, Sung-Chul;Lee, Dong-Hyuk;Lee, Ho-Seong;Won, Jong-Phil;Lee, Dae-Woong;Lee, Won-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.150-157
    • /
    • 2008
  • The main objective of this paper is to investigate the performance characteristics of a $CO_2$ air conditioning system for fuel cell electric vehicles (FCEV). The present air conditioning system for FCEV uses the electrically driven compressor and electrically controlled expansion valve for $CO_2$ as a working fluid. The experimental work has been done with various operating conditions, which are quite matching the actual vehicle's driving conditions such as different compressor speed and high pressure to identify the characteristics of the system. Experimental results show that the cooling capacity and coefficient of performance (COP) were up to 6.3kW and 2.5, respectively. This paper also deals with the development of optimum high pressure control algorithm for the transcritical $CO_2$ cycle to achieve the maximum COP.

Performance Characteristics of the Desiccant Cooling System in Various Outdoor and Load Conditions (외기조건에 따른 제습냉방시스템의 성능 특성)

  • Lee, Dae-Young;Chang, Young-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.623-628
    • /
    • 2009
  • Desiccant based air conditioning system offers a promising alternative to conventional one using vapour compression refrigeration for energy saving and greenhouse gas reduction. It is a heat driven cycle which has high potential for the use of low grade heat source such as the waste heat from the cogeneration plant or the solar thermal energy. In this study, the cooling performance of a desiccant cooling system incorporating a regenerative evaporative cooler was characterized in various operation conditions through numerical simulation. The cooling capacity and COP were evaluated at various outdoor conditions, regeneration temperatures, and supply flow rates. Based on the performance characteristics, the optimal control scheme was discussed to minimize the cooling cost at part load condition.

  • PDF